All Topics

DM-30 - Vagueness
  • Compare and contrast the meanings of related terms such as vague, fuzzy, imprecise, indefinite, indiscrete, unclear, and ambiguous
  • Describe the cognitive processes that tend to create vagueness
  • Recognize the degree to which vagueness depends on scale
  • Evaluate vagueness in the locations, time, attributes, and other aspects of geographic phenomena
  • Differentiate between the following concepts: vagueness and ambiguity, well defined and poorly defined objects and fields, and discord and non-specificity
  • Identify the hedges used in language to convey vagueness
  • Evaluate the role that system complexity, dynamic processes, and subjectivity play in the creation of vague phenomena and concepts
  • Differentiate applications in which vagueness is an acceptable trait from those in which it is unacceptable
KE-14 - Valuing and measuring benefits
  • Distinguish between operational, organizational, and societal activities that rely upon geospatial information
  • Describe the potential benefits of geospatial information in terms of efficiency, effectiveness, and equity
  • Explain how cost-benefit analyses can be manipulated
  • Compare and contrast the evaluation of benefits at different scales (e.g., national, regional/state, local)
  • Identify practical problems in defining and measuring the value of geospatial information in land or other business decisions
DC-14 - Vector data extraction
  • Describe the source data, instrumentation, and workflow involved in extracting vector data (features and elevations) from analog and digital stereoimagery
  • Discuss future prospects for automated feature extraction from aerial imagery
  • Discuss the extent to which vector data extraction from aerial stereoimagery has been automated
CV-03 - Vector Formats and Sources
  • List the data required to explore a specified problem
  • Discuss the extent, classification, and currency of government data sources and their influence on mapping
  • List the data required to compile a map that conveys a specified message
  • Discuss the issue of conflation of data from different sources or for different uses as it relates to mapping
  • Describe a situation in which it would be acceptable to use smaller-scale data sources for compilation to compile a larger scale map
  • Describe the copyright issues involved in various cartographic source materials
  • Explain how data acquired from primary sources, such as satellite imagery and GPS, differ from data compiled from maps, such as DLGs
  • Explain how digital data compiled from map sources influences how subsidiary maps are compiled and used
  • Explain how geographic names databases (i.e., gazetteer) are used for mapping
  • Explain how the inherent properties of digital data, such as Digital Elevation Models, influence how maps can be compiled from them
  • Identify the types of attributes that will be required to map a particular distribution for selected geographic features
  • Determine the standard scale of compilation of government data sources
  • Assess the data quality of a source dataset for appropriateness for a given mapping task, including an evaluation of the data resolution, extent, currency or date of compilation, and level of generalization in the attribute classification
  • Compile a map using at least three data sources
AM-59 - Vector-to-raster and raster-to-vector conversions
  • Explain how the vector/raster/vector conversion process of graphic images and algorithms takes place and how the results are achieved
  • Create estimated tessellated data sets from point samples or isolines using interpolation operations that are appropriate to the specific situation
  • Illustrate the impact of vector/raster/vector conversions on the quality of a dataset
  • Convert vector data to raster format and back using GIS software
DM-51 - Vertical datums
  • Explain how a vertical datum is established
  • Differentiate between NAVD 29 and NAVD 88
  • Illustrate the difference between a vertical datum and a geoid
  • Illustrate the relationship among the concepts ellipsoidal (or geodetic) height, geoidal height, and orthometric elevation
  • Outline the historical development of vertical datums
CV-16 - Virtual and immersive environments
  • Discuss the nature and use of virtual environments, such as Google Earth
  • Explain how various data formats and software and hardware environments support immersive visualization
  • Compare and contrast the relative advantages of different immersive display systems used for cartographic visualization (e.g., CAVEs, GeoWalls)
  • Evaluate the extent to which a GeoWall or CAVE does or does not enhance understanding of spatial data
  • Explain how the virtual and immersive environments become increasingly more complex as we move from the relatively non-immersive VRML desktop environment to a stereoscopic display (e.g., a GeoWall) to a more fully immersive CAVE
CV-07 - Visual Hierarchy and Layout

Mapmaking, by digital or manual methods, involves taking complex geographic information and building a visual image with many components. Creating effective maps requires an understanding of how to construct the elements of the map into a coherent whole that executes the communicative purpose of the map. Visual hierarchy and layout are the cartographer’s tools for organizing the map and completing the map construction. The cartographer layers the mapped geography in an image into a visual hierarchy emphasizing some features and de-emphasizing others in vertical ordering of information. Likewise, the cartographer arranges the components of a map image—title, main map, inset map, north arrow, scale, legend, toolbar, etc.—into a layout that guides the reader’s eye around the horizontal plane of the map. The visual hierarchy and layout processes work together to create the structure of the map image.