All Topics

A B C D E F G H I K L M N O P R S T U V W
AM-11 - Analyzing multidimensional attributes
  • Relate plots of multidimensional attribute data to geography by equating similarity in data space with proximity in geographical space
  • Conduct a simple hierarchical cluster analysis to classify area objects into statistically similar regions
  • Perform multidimensional scaling (MDS) and principal components analysis (PCA) to reduce the number of coordinates, or dimensionality, of a problem
  • Produce plots in several data dimensions using a data matrix of attributes
  • Assemble a data matrix of attributes
KE-04 - Application user assessment
  • Identify current and potential users of geospatial technology in an enterprise
  • Identify new geographic tasks or information that align with institutional missions and goals
  • Educate potential users on the value of geospatial technology
  • Classify potential users as casual or professional, early adopters or reluctant users
  • Recognize geographic tasks and geographic information that already exist in an enterprise
  • Evaluate the potential for using geospatial technology to improve the efficiency and/or effectiveness of existing activities
  • Differentiate the concepts of efficiency and effectiveness in application requirements
DA-02 - Applications and settings
  • Describe how sea surface temperatures are mapped
  • Explain how sea surface temperature maps are used to predict El Niño events
  • Outline a plausible workflow used by MDA Federal (formerly EarthSat) to create the high-resolution GEOCOVER global imagery and GEOCOVER-LC global land cover datasets.
  • Outline a plausible workflow for habitat mapping, such as the benthic habitat mapping in the main Hawaiian Islands as part of the NOAA Biogeography program
DA-07 - Applications in federal government
  • List and describe the types of data maintained by federal governments
  • Explain how geospatial information might be used in a taking of private property through a government’s claim of its right of eminent domain
  • Describe how geospatial data are used and maintained for land use planning, property value assessment, maintenance of public works, and other applications
  • Explain the concept of a “spatial decision support system”
DA-05 - Applications in local government
  • List and describe the types of data maintained by local governments
  • Explain how geospatial information might be used in a taking of private property through a government’s claim of its right of eminent domain
  • Describe how geospatial data are used and maintained for land use planning, property value assessment, maintenance of public works, and other applications
  • Explain the concept of a “spatial decision support system”
DA-06 - Applications in state government
  • List and describe the types of data maintained by state governments
  • Explain how geospatial information might be used in a taking of private property through a government’s claim of its right of eminent domain
  • Describe how geospatial data are used and maintained for land use planning, property value assessment, maintenance of public works, and other applications
  • Explain the concept of a “spatial decision support system”
AM-62 - Approaches to point, line, and area generalization
  • Describe the basic forms of generalization used in applications in addition to cartography (e.g., selection, simplification)
  • Explain why areal generalization is more difficult than line simplification
  • Explain the logic of the Douglas-Poiker line simplification algorithm
  • Explain the pitfalls of using data generalized for small scale display in a large scale application
  • Design an experiment that allows one to evaluate the effect of traditional approaches of cartographic generalization on the quality of digital data sets created from analog originals
  • Evaluate various line simplification algorithms by their usefulness in different applications
  • Discuss the possible effects on topological integrity of generalizing data sets
DM-44 - Approximating the Earth's shape with geoids
  • Explain why gravity varies over the Earth’s surface
  • Explain how geoids are modeled
  • Explain the role that the U.S. National Geodetic Survey plays in maintaining and developing geoid models
  • Explain the concept of an equipotential gravity surface (i.e., a geoid)
DM-43 - Approximating the geoid with spheres and ellipsoids
  • Identify the parameters used to define an ellipsoid
  • Differentiate the Clarke 1866 and WGS 84 ellipsoids in terms of ellipsoid parameters
  • Differentiate between a bi-axial and tri-axial ellipsoid and their applications
  • Explain why spheres and ellipsoids are used to approximate geoids
  • Distinguish between a geoid, an ellipsoid, a sphere, and the terrain surface
  • Describe an application for which it is acceptable to use a sphere rather than an ellipsoid
FC-16 - Area and Region
  • List reasons why the area of a polygon calculated in a GIS might not be the same as the real world object it describes
  • Demonstrate how the area of a region calculated from a raster data set will vary by resolution and orientation
  • Outline an algorithm to find the area of a polygon using the coordinates of its vertices
  • Explain how variations in the calculation of area may have real world implications, such as calculating density
  • Delineate regions using properties, spatial relationships, and geospatial technologies
  • Exemplify regions found at different scales
  • Explain the relationship between regions and categories
  • Identify the kinds of phenomena commonly found at the boundaries of regions
  • Explain why general-purpose regions rarely exist
  • Differentiate among different types of regions, including functional, cultural, physical, administrative, and others
  • Compare and contrast the opportunities and pitfalls of using regions to aggregate geographic information (e.g., census data)
  • Use established analysis methods that are based on the concept of region (e.g., landscape ecology)
  • Explain the nature of the Modifiable Areal Unit Problem (MAUP)

Pages