2016 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
DA3-1 - Feasibility analysis
  • List the costs and benefits (financial and intangible) of implementing geospatial technology for a particular application or an entire institution
  • Evaluate possible solutions to the major obstacles that stand in the way of a successful GIS proposal
  • List some of the topics that should be addressed in such a justification of geospatial technology (e.g., ROI, workflow, knowledge sharing)
  • Decide whether geospatial technology should be used for a particular task
  • Perform a pilot study to evaluate the feasibility of an application
  • Justify feasibility recommendations to decision makers
  • Identify major obstacles to the success of a GIS proposal
  • Compare and contrast the relative merits of outsourcing the feasibility analysis and system design processes or doing them in-house
OI6-1 - Federal agencies and national and international organizations and programs
  • Describe the data programs provided by organizations such as The National Map, GeoSpatial One Stop, and National Integrated Land System
  • Discuss the mission, history, constituencies, and activities of international organizations such as Association of Geographic Information Laboratories for Europe (AGILE) and the European GIS Education Seminar (EUGISES)
  • Discuss the mission, history, constituencies, and activities of governmental entities such as the Bureau of Land Management (BLM), United States Geological Survey (USGS) and the Environmental Protection Agency (EPA) as they related to support of professionals and organizations
  • involved in GIS&T
  • Discuss the mission, history, constituencies, and activities of GeoSpatial One Stop
  • Discuss the mission, history, constituencies, and activities of the Open Geospatial Consortium (OGC), Inc.
  • Discuss the mission, history, constituencies, and activities of the Nation Integrated Land System (NILS)
  • Discuss the mission, history, constituencies, and activities of the Federal Geographic Data Committee (FGDC)
  • Discuss the mission, history, constituencies, and activities of the National Academies of Science Mapping Science Committee
  • Discuss the mission, history, constituencies, and activities of the USGS and its National Map vision
  • Discuss the mission, history, constituencies, and activities of University Consortium of Geographic Information Science (UCGIS) and the National Center for Geographic Information and Analysis (NCGIA)
  • Discuss the political, cultural, economic, and geographic characteristics of various countries that influence their adoption and use of GIS&T
  • Identify National Science Foundation (NSF) programs that support GIS&T research and education
  • Outline the principle concepts and goals of the “digital earth” vision articulated in 1998 by Vice President Al Gore
  • Assess the current status of Gore’s “digital earth”
GS7-3 - Feminist critiques
  • Defend or refute the contention that the masculinist culture of computer work in general, and GIS work in particular, perpetuates gender inequality in GIS&T education and training and occupational segregation in the GIS&T workforce
  • Discuss the potential role of agency (individual action) in resisting dominant practices and in using GIS&T in ways that are consistent with feminist epistemologies and politics
  • Explain the argument that GIS and remote sensing foster a “disembodied” way of knowing the world
GD9-4 - Field data technologies
  • Identify the measurement framework that applies to moving object tracking
  • Explain the advantage of real-time kinematic GPS in field data collection
  • Describe an application of hand-held computing or personal digital assistants (PDAs) for field data collection
  • Considering the measurement framework applied to moving object tracking, identify which of the dimensions of location, attribute, and time is fixed, which is controlled, and which is measured
  • Describe a real or hypothetical application of a sensor network in field data collection
  • Outline a combination of positioning techniques that can be used to support location-based services in a given environment
CF4-3 - Fields in space and time
  • Define a field in terms of properties, space, and time
  • Formalize the notion of field using mathematical functions and calculus
  • Recognize the influences of scale on the perception and meaning of fields
  • Evaluate the field view’s description of “objects” as conceptual discretizations of continuous patterns
  • Identify applications and phenomena that are not adequately modeled by the field view
  • Identify examples of discrete and continuous change found in spatial, temporal, and spatio-temporal fields
  • Relate the notion of field in GIS to the mathematical notions of scalar and vector fields
  • Differentiate various sources of fields, such as substance properties (e.g., temperature), artificial constructs (e.g., population density), and fields of potential or influence (e.g., gravity)
AM11-4 - Flow modeling
  • Describe practical situations in which flow is conserved while splitting or joining at nodes of the network
  • Apply a maximum flow algorithm to calculate the largest flow from a source to a sink, using the edges of the network, subject to capacity constraints on the arcs and the conservation of flow
  • Explain how the concept of capacity represents an upper limit on the amount of flow through the network
  • Demonstrate how capacity is assigned to edges in a network using the appropriate data structure
DA5-4 - Formalizing a procedure design
  • Compare and contrast the relative merits of object-oriented and procedural designs for modeling tasks
  • Select the appropriate environment (e.g., GIS software, software development environment) for implementing an analytical procedure
  • Compare and contrast the relative merits of various tools and methods for procedure design, including flowcharting and pseudocode
AM6-5 - Friction surfaces
  • Define “friction surface”
  • Apply the principles of friction surfaces in the calculation of least-cost paths
  • Explain how friction surfaces are enhanced by the use of impedance and barriers
CF2-2 - From concepts to data
  • Define the following terms: data, information, knowledge, and wisdom
  • Describe the limitations of various information stores for representing geographic information, including the mind, computers, graphics, and text
  • Transform a conceptual model of information for a particular task into a data model
DA3-6 - Funding
  • Identify potential sources of funding (internal and external) for a project or enterprise GIS
  • Create proposals and presentations to secure funding
  • Analyze previous attempts at funding to identify successful and unsuccessful techniques

Pages