2016 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
DA3-5 - Capital: facilities and equipment
  • Identify the hardware and space that will be needed for a GIS implementation
  • Compare and contrast the relative merits of housing GISs within IT (information technology) and MIS (management information system) facilities versus keeping them separate
  • Collaborate effectively with various units in an institution to develop efficient hardware and space solutions
  • Hypothesize the ways in which capital needs for GIS may change in the future
AM5-6 - Cartographic modeling
  • Describe the difference between prescriptive and descriptive cartographic models
  • Develop a flowchart of a cartographic model for a site suitability problem
  • Discuss the origins of cartographic modeling with reference to the work of Ian McHarg
CF5-1 - Categories
  • Explain the human tendency to simplify the world using categories
  • Identify specific examples of categories of entities (i.e., common nouns), properties (i.e., adjectives), space (i.e., regions), and time (i.e., eras)
  • Explain the role of categories in common-sense conceptual models, everyday language, and analytical procedures
  • Recognize and manage the potential problems associated with the use of categories (e.g., the ecological fallacy)
  • Construct taxonomies and dictionaries (also known as formal ontologies) to communicate systems of categories
  • Describe the contributions of category theory to understanding the internal structure of categories
  • Document the personal, social, and/or institutional meaning of categories used in GIS applications
  • Create or use GIS data structures to represent categories, including attribute columns, layers/themes, shapes, and legends
  • Use categorical information in analysis, cartography, and other GIS processes, avoiding common interpretation mistakes
  • Reconcile differing common-sense and official definitions of common geospatial categories of entities, attributes, space, and time
DM4-4 - Classic vector data models
  • Illustrate the GBF/DIME data model
  • Describe a Freeman-Huffman chain code
  • Describe the relationship of Freeman-Huffman chain codes to the raster model
  • Discuss the impact of early prototype data models (e.g., POLYVRT and GBF/DIME) on contemporary vector formats
  • Describe the relationship between the GBF/DIME and TIGER structures, the rationale for their design, and their intended primary uses, paying particular attention to the role of graph theory in establishing the difference between GBF/DIME and TIGER files
  • Discuss the advantages and disadvantages of POLYVRT
  • Explain what makes POLYVRT a hierarchical vector data model
DN2-3 - Classification and transformation of attribute measurement levels
  • Identify a variety of likely measurement level transformations (e.g., the classification of ratio data yields ordinal data)
  • Describe the pitfalls, in terms of information loss and analytical options, of transforming attribute measurement levels
  • Reclassify (group) a nominal attribute domain to fewer, broader classes
  • Discuss the relationship of attribute measurement levels to database query operations
GS6-2 - Codes of ethics for geospatial professionals
  • Compare and contrast the ethical guidelines promoted by the GIS Certification Institute (GISCI) and the American Society for Photogrammetry and Remote Sensing (ASPRS)
  • Propose a resolution to a conflict between an obligation in the GIS Code of Ethics and organizations’ proprietary interests
  • Explain how one or more obligations in the GIS Code of Ethics may conflict with organizations’ proprietary interests
  • Describe the sanctions imposed by ASPRS and GISCI on individuals whose professional actions violate the codes of ethics
DM2-1 - Coevolution of DBMS and GIS
  • Demonstrate how DBMS are currently used in conjunction with GIS
  • Diagram network DBMS architecture
  • Differentiate among network, hierarchical and relational database structures, and their uses and limitations for geographic data storage and processing
  • Describe the geo-relational model (or dual architecture) approach to GIS DBMS
  • Explain why some of the older DBMS are now of limited use within GIS
  • Diagram hierarchical DBMS architecture
CV3-3 - Color for cartography and visualization
  • List the range of factors that should be considered in selecting colors
  • Discuss the role of “gamut” in choosing colors that can be reproduced on various devices and media
  • Explain how real-world connotations (e.g., blue=water, white=snow) can be used to determine color selections on maps
  • Exemplify colors for different forms of harmony, concordance, and balance
  • Estimate RGB (red, green, blue) primary amounts in a selection of colors
  • Plan color proofing suited for checking a map publication job
  • Select colors appropriate for map readers with color limitations
  • Specify a set of colors in device-independent Commision Internationale de L’Eclairage (CIE) specifications
  • Determine the CMYK (cyan, magenta, yellow, and black) primary amounts in a selection of colors
  • Select a color scheme (e.g., qualitative, sequential, diverging, spectral) that is appropriate for a given map purpose and variable
  • Describe how cultural differences with respect to color associations impact map design
  • Describe the common color models used in mapping
  • Describe color decisions made for various production workflows
CF2-5 - Common-sense geographies
  • Identify common-sense views of geographic phenomena that sharply contrast with established theories and technologies of geographic information
  • Differentiate applications that can make use of common-sense principles of geography from those that should not
  • Collaborate with non-GIS experts who use GIS to design applications that match commonsense understanding to an appropriate degree
  • Effectively communicate the design, procedures, and results of GIS projects to non-GIS audiences (clients, managers, general public)
  • Evaluate the impact of geospatial technologies (e.g., Google Earth) that allow non-geospatial professionals to create, distribute, and map geographic information
DA1-2 - Components of models: data, structures, procedures
  • Differentiate the three major parts of a model
  • Describe the mapping from components of the world (and conceptualizations of them) to the components of a model
  • Explain the importance of context in effectively using models
  • Identify the composition of existing models

Pages