Analytics and Modeling

This knowledge area embodies a variety of data driven analytics, geocomputational methods, simulation and model driven approaches designed to study complex spatial-temporal problems, develop insights into characteristics of geospatial data sets, create and test geospatial process models, and construct knowledge of the behavior of geographically-explicit and dynamic processes and their patterns.

Topics in this Knowledge Area are listed thematically below. Existing topics are linked directly to either their original (2006) or revised entries; forthcoming, future topics are italicized. 


Basic Spatial Operations Advanced Spatial Analysis Surface Analysis
Buffers Identifying & designing analytical procedures Calculating surface derivatives
Overlay Point pattern analysis Interpolation methods
Neighborhoods Cluster analysis Intervisibility
Map algebra Exploratory data analysis (EDA) Cost surfaces
  Analyzing multi-dimensional attributes  
Spatial Modeling Multi-criteria evaluation Network Analysis
Cartographic modeling Weighting schemes Least-cost (shortest) path analysis 
Components of models Spatial interaction Flow modeling
Coupling scientific models with GIS The spatial weights matrix The Classic Transportation Problem
Mathematical models Spatial interaction Other classic network problems
Spatial process models Space-scale algorithms Modeling Accessibility
Using models to represent info & processes    
Workflow analysis and design Space-Time Analytics & Modeling Data Mining
  Computational movement analysis Data mining approaches
Data Manipulation Time geography Knowledge discovery
Approaches to point, line, area generalization   Pattern recognition
Coordinate transformations Spatial Statistics Geospatial data classification
Data conversion Global measures of spatial association Multi-layer feed-forward neural networks
Impacts of transformations Local measures of spatial association Rule learning
Raster resampling Spatial sampling for statistical analysis  
Vector-to-raster and raster-to-vector conversions Stochastic processes Spatial Simulation
  Outliers Simulation modeling
Analysis of Errors and Uncertainty  Bayesian methods Cellular Automata
Problems of currency, source, and scale Principles of semi-variogram construction Simulated annealing
Theory of error propagation Semi-variogram modeling Agent-based models
Propagation of error in geospatial modeling Kriging methods Adaptive agents
Fuzzy aggregation operators Principles of spatial econometrics Microsimulation & calibration of agent activities
  Spatial autoregressive models  
  Spatial filtering Spatial Optimization
  Kernels and density estimation Location-allocation modeling
  Spatial expansion & Geographically weighted regression Greedy heuristics
  Spatial distribution Interchange heuristics
  Mathematical models of uncertainty Genetic algorithms
  Non-linearity relationships and non-Gaussian distributions  
  Interchange with probability