Data Management

Data management involves the theories and techniques for managing the entire data lifecycle, from data collection to data format conversion, from data storage to data sharing and retrieval, to data provenance, data quality control and data curation for long-term data archival and preservation.

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

 

Database Management Systems Events and Processes Plane Coordinate Systems
Data Retrieval Strategies Fields in Space & Time Tessellated Referencing Systems
Relational DBMS Integrated Models Linear Referencing
Extensions of the Relational Model Mereology: Structural Relationships Linear Referencing Systems
Object-oriented Spatial Databases Geneaological Relationships: Lineage, Inheritance Vertical Datums
Spatio-temporal GIS Topological Relationships Horizontal Datums
Database Change Modeling Tools Map Projection Properties
Modeling Database Change Conceptual Data Models Map Projection Classes
Managing Versioned Geospatial Databases Logical Data Models Map Projection Parameters
Reconciling Database Change Physical Data Models  
Data Warehouses Fuzzy Logic Georegistration
Ongoing GIS Revision Grid Compression Methods Systematic Georefencing Systems
Database Administration Spatial Indexing Unsystematic Georeferencing Systems
NoSQL Databases    
Spatial Data Models   Spatial Data Infrastructure
Basic Data Structures Spatial Data Quality Spatial Data Infrastructures
Grid Representations Spatial Data Uncertainty Content Standards
The Raster Model Error-based Uncertainty Metadata
The Hexagonal Model Modeling Uncertainty Adoption of Standards
The Triangulated Irregular Network (TIN) Model Vagueness  
Hierarchical Data Models Mathemematical Models of Vaguness: Fuzzy Sets and Rough Sets  
Classical Vector Data Models    
The Topological Model Georeferencing Systems  
The Spaghetti Model History of Understanding Earth's Shape  
The Network Model Approximating the Geoid with Spheres & Ellipsoids  
Discrete Entities Approximating the Earth's Shape with Geoids  
Modeling 3D Entities The Geographic Coordinate System  

 

DM-10 - The Triangulated Irregular Network (TIN) model
  • Describe how to generate a unique TIN solution using Delaunay triangulation
  • Describe the architecture of the TIN model
  • Construct a TIN manually from a set of spot elevations
  • Delineate a set of break lines that improve the accuracy of a TIN
  • Describe the conditions under which a TIN might be more practical than GRID
  • Demonstrate the use of the TIN model for different statistical surfaces (e.g., terrain elevation, population density, disease incidence) in a GIS software application
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena
DM-45 - Unsystematic methods
  • Compare and contrast the typical spatial arrangements of land parcels characteristic of early English, Spanish, and French settlements in the U.S.
  • State a metes and bounds land description of a property parcel delineated in a land survey drawing
  • Discuss advantages and disadvantages of unsystematic land partitioning methods in the context of GIS
DM-30 - Vagueness
  • Compare and contrast the meanings of related terms such as vague, fuzzy, imprecise, indefinite, indiscrete, unclear, and ambiguous
  • Describe the cognitive processes that tend to create vagueness
  • Recognize the degree to which vagueness depends on scale
  • Evaluate vagueness in the locations, time, attributes, and other aspects of geographic phenomena
  • Differentiate between the following concepts: vagueness and ambiguity, well defined and poorly defined objects and fields, and discord and non-specificity
  • Identify the hedges used in language to convey vagueness
  • Evaluate the role that system complexity, dynamic processes, and subjectivity play in the creation of vague phenomena and concepts
  • Differentiate applications in which vagueness is an acceptable trait from those in which it is unacceptable
DM-51 - Vertical datums
  • Explain how a vertical datum is established
  • Differentiate between NAVD 29 and NAVD 88
  • Illustrate the difference between a vertical datum and a geoid
  • Illustrate the relationship among the concepts ellipsoidal (or geodetic) height, geoidal height, and orthometric elevation
  • Outline the historical development of vertical datums

Pages