All Topics

A B C D E F G H I J K L M N O P R S T U V W
PD-29 - Programming of Mobile GIS Applications

Mobile technology has significantly changed how we communicate and interact with the outside world. With the increasing use of mobile devices and advancement of information communication information (ICT) technologies, mobile GIS emerged to provide real-time data collection and update, and made GIS easier and convenient to access. This entry introduces the concept, types, and general architecture of mobile GIS, key technologies used for mobile GIS development, and examples of mobile GIS applications.

FC-17 - Proximity and Distance Decay

Distance decay is an essential concept in geography. At its core, distance decay describes how the relationship between two entities generally gets weaker as the separation between them increases. Inspired by long-standing ideas in physics, the concept of distance decay is used by geographers to analyze two kinds of relationships. First, the term expresses how measured interactions (such as trade volume or migration flow) generally decrease as the separation between entities increases, as is analyzed by spatial interaction models. Second, the term is used to describe how the implicit similarity between observations changes with separation, as measured by variograms. For either type of relationship, we discuss how "separation" must be clearly articulated according to the mechanism of the relationship under study. In doing this, we suggest that separation need not refer to positions in space or time, but can involve social or behavioral perceptions of separation, too. To close, we present how the "death of distance" is transforming distance decay in uneven ways.

PD-31 - PySAL and Spatial Statistics Libraries

As spatial statistics are essential to the geographical inquiry, accessible and flexible software offering relevant functionalities is highly desired. Python Spatial Analysis Library (PySAL) represents an endeavor towards this end. It is an open-source python library and ecosystem hosting a wide array of spatial statistical and visualization methods. Since its first public release in 2010, PySAL has been applied to address various research questions, used as teaching materials for pedagogical purposes in regular classes and conference workshops serving a wide audience, and integrated into general GIS software such as ArcGIS and QGIS. This entry first gives an overview of the history and new development with PySAL. This is followed by a discussion of PySAL’s new hierarchical structure, and two different modes of accessing PySAL’s functionalities to perform various spatial statistical tasks, including exploratory spatial data analysis, spatial regression, and geovisualization. Next, a discussion is provided on how to find and utilize useful materials for studying and using spatial statistical functions from PySAL and how to get involved with the PySAL community as a user and prospective developer. The entry ends with a brief discussion of future development with PySAL.

PD-11 - Python for GIS

Figure 1. PySAL within QGIS Processing Toolbox: Hot-spot analysis of Homicide Rates in Southern US Counties.

 

Python is a popular language for geospatial programming and application development. This entry provides an overview of the different development modes that can be adopted for GIS programming with Python and discusses the history of Python adoption in the GIS community. The different layers of the geospatial development stack in Python are examined giving the reader an understanding of the breadth that Python offers to the GIS developer. Future developments and broader issues related to interoperability and programming ecosystems are identified.

Pages