All Topics

This knowledge area embodies a variety of data driven analytics, geocomputational methods, simulation and model driven approaches designed to study complex spatial-temporal problems, develop insights into characteristics of geospatial data sets, create and test geospatial process models, and construct knowledge of the behavior of geographically-explicit and dynamic processes and their patterns.

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

 

Methodological Context Surface & Field Analyses Space-Time Analysis & Modeling
Geospatial Analysis & Model Building Modeling Surfaces Time Geography
Changing Context of GIScience Gridding, Interpolation, and Contouring Capturing Spatio-Temporal Dynamics in Computational Modeling 
Building Blocks Inverse Distance Weighting GIS-Based Computational Modeling
Overlay & Combination Operations Radial Basis & Spline Functions Computational Movement Analysis
Areal Interpolation Polynomial Functions Volumes and Space-Time Volumes
Aggregation of Spatial Entities Kriging Interpolation  
Classification & Clustering LiDAR Point Cloud Analysis Geocomputational Methods & Models
Boundaries & Zone Membership Intervisibility, Line-of-Sight, and Viewsheds Cellular Automata
Spatial Queries Digital Elevation Models & Terrain Metrics Agent-based Modeling
Buffers TIN-based Models and Terrain Metrics Simulation Modeling
Grid Operations & Map Algebra Watersheds & Drainage Artificial Neural Networks
Data Exploration & Spatial Statistics 3D Parametric Surfaces Genetic Algorithms & Evolutionary Computing 
Spatial Statistics Network & Location Analysis Big Data & Geospatial Analysis
Spatial Sampling for Spatial Analysis Intro to Network & Location Analysis Problems & with Large Spatial Databases
Exploratory Spatial Data Analysis (ESDA) Location & Service Area Problems Pattern Recognition & Matching
Point Pattern Analysis Network Route & Tour Problems Artificial Intelligence Approaches
Kernels & Density Estimation Modelling Accessibility Intro to Spatial Data Mining
Spatial Interaction Location-allocation Modeling Rule Learning for Spatial Data Mining
Cartographic Modeling The Classic Transportation Problem Machine Learning Approaches
Multi-criteria Evaluation   CyberGIS and Cyberinfrastructure
Grid-based Statistics and Metrics   Analysis of Errors & Uncertainty
Landscape Metrics   Error-based Uncertainty
Hot-spot and Cluster Analysis   Conceptual Models of Error & Uncertainty
Global Measures of Spatial Association   Spatial Data Uncertainty
Local Indicators of Spatial Autocorrelation   Problems of Scale & Zoning
Simple Regression & Trend Surface Analysis   Thematic Accuracy & Assessment
Geographically Weighted Regression   Stochastic Simulation & Monte Carlo Methods
Spatial Autoregressive & Bayesian Methods   Mathematical Models of Uncertainty
Spatial Filtering Models   Fuzzy Aggregation Operators

 

A B C D E F G I K L M O P R S T V W
AM-56 - Impacts of transformations
  • Compare and contrast the impacts of different conversion approaches, including the effect on spatial components
  • Create a flowchart showing the sequence of transformations on a data set (e.g., geometric and radiometric correction and mosaicking of remotely sensed data)
  • Prioritize a set of algorithms designed to perform transformations based on the need to maintain data integrity (e.g., converting a digital elevation model into a TIN)
AM-16 - Interpolation methods
  • Identify the spatial concepts that are assumed in different interpolation algorithms
  • Compare and contrast interpolation by inverse distance weighting, bi-cubic spline fitting, and kriging
  • Differentiate between trend surface analysis and deterministic spatial interpolation
  • Explain why different interpolation algorithms produce different results and suggest ways by which these can be evaluated in the context of a specific problem
  • Design an algorithm that interpolates irregular point elevation data onto a regular grid
  • Outline algorithms to produce repeatable contour-type lines from point datasets using proximity polygons, spatial averages, or inverse distance weighting
  • Implement a trend surface analysis using either the supplied function in a GIS or a regression function from any standard statistical package
  • Describe how surfaces can be interpolated using splines
  • Explain how the elevation values in a digital elevation model (DEM) are derived by interpolation from irregular arrays of spot elevations
  • Discuss the pitfalls of using secondary data that has been generated using interpolations (e.g., Level 1 USGS DEMs)
  • Estimate a value between two known values using linear interpolation (e.g., spot elevations, population between census years)
AM-17 - Intervisibility
  • Define “intervisibility”
  • Outline an algorithm to determine the viewshed (area visible) from specific locations on surfaces specified by DEMs
  • Perform siting analyses using specified visibility, slope, and other surface related constraints
  • Explain the sources and impact of errors that affect intervisibility analyses