All Topics

A B C D E F G H I J K L M N O P R S T U V W
DA-18 - GIS&T and Disaster Management

Geographic Information Science and Technology (GIS&T) has a long-running tradition of using spatially-oriented methodologies and representational techniques such as cartography and mapping to address hazards and disasters. This tradition remains important as ever as global society faces newer and more complex challenges resulting from climate change and new challenges such as the COVID-19 pandemic. GIS&T has become an invisible technology within the disaster management cycle of planning and preparedness, response, recovery, and mitigation. Spatial technologies such as geographic information systems (GIS), remote sensing techniques, spatial data science, artificial intelligence, and machine learning are now widespread and pervasive. Despite these advancements, there is more that can be done to incorporate GIS&T perspectives into disaster management. In this article, we outline important conceptual ideas to consider on the use of GIS&T for disaster management, disaster management organizations that use GIS&T, and practical information to orient newcomers to this exciting and important interdisciplinary combination.

DA-37 - GIS&T and Epidemiology

Location plays an important role in human health. Where we live, work, and spend our time is associated with different exposures, which may influence the risk of developing disease. GIS has been used to answer key research questions in epidemiology, which is the study of the distribution and determinants of disease. These research questions include describing and visualizing spatial patterns of disease and risk factors, exposure modeling of geographically varying environmental variables, and linking georeferenced information to conduct studies testing hypotheses regarding exposure-disease associations. GIS has been particularly instrumental in environmental epidemiology, which focuses on the physical, chemical, biological, social, and economic factors affecting health. Advances in personal exposure monitoring, exposome research, and artificial intelligence are revolutionizing the way GIS can be integrated with epidemiology to study how the environment may impact human health.

DA-16 - GIS&T and Forestry

GIS applications in forestry are as diverse as the subject itself. Many foresters match a common stereotype as loggers and firefighters, but many protect wildlife, manage urban forests, enhance water quality, provide for recreation, and plan for a sustainable future.  A broad range of management goals drives a broad range of spatial methods, from adjacency functions to zonal analysis, from basic field measurements to complex multi-scale modeling. As such, it is impossible to describe the breadth of GIS&T in forestry. This review will cover core ways that geospatial knowledge improves forest management and science, and will focus on supporting core competencies.  

DA-09 - GIS&T and Geodesign

Geodesign leverages GIS&T to allow collaborations that result in geographically specific, adaptive and resilient solutions to complex problems across scales of the built and natural environment. Geodesign is rooted in decades of research and practice. Building on that history, is a contemporary approach that embraces the latest in GIS&T, visualization, and social science, all of which is organized around a unique framework process involving six models. More than just technology or GIS, Geodesign is a way of thinking when faced with complicated spatial issues that need systematic, creative, and integrative solutions.  Geodesign holds great promise for addressing the complexity of interrelated issues associated with growth and landscape change. Geodesign empowers through design combined with data and analytics to shape our environments and create desired futures.

DA-30 - GIS&T and Landscape Ecology

Landscape ecology is a transdisciplinary science dedicated to the study of the interactions among landscape heterogeneity, humans, and natural system. Since its inception in the mid-20th Century, landscape ecology has been strongly intertwined with spatial technologies, from aerial photography to modern space-borne sensors. Satellite-based remote sensing is among the primary data sources for contemporary landscape ecology analysis, while geographic information systems provide tools to analyze the spatial configurations of satellite derived classifications, simulate landscapes and species distributions, quantify landscape change, and elucidate the reciprocal relationship between spatial patterns and ecological processes. Additionally, global navigation satellite systems, such as GPS, Galileo, and GLONASS, augment these datasets and may be used for data collection to aid landscape ecology research. Emerging geospatial technologies, such as unoccupied aerial systems and micro- and nanosatellites, also have a role to play in landscape ecology.

DA-31 - GIS&T and Libraries, Archives, and Museums

Libraries, archives, and museums (LAMs) are an important part of the GIS&T ecosystem and they engage in numerous activities that are critical for students, researchers, and practitioners. Traditionally these organizations have been at the forefront of developing infrastructures and services that connect researchers and others to historical and contemporary GIS data, including print maps. More recently, as a result of greater interest in spatial thinking and research, these organizations and institutions have become a place for instruction, outreach, and practice. This entry will discuss the historical role that LAMs have played in supporting and developing GIS&T as well as focus on current trends.

DA-05 - GIS&T and Local Government

GIS is an important tool for local governments. It is utilized to provide spatial information, metrics, and visualizations to constituents, businesses, and decision-makers. Internally, a well-managed GIS can be the basis for innovation and process improvement and can be a single source for employees to find a plethora of integrated data. This entry discusses how GIS supports local government, important considerations for maintaining a successful local government GIS, and current trends. This entry is based on the author’s experience in a GIS program at a medium-sized city in the Rocky Mountain Region of the United States. Not everything discussed may apply to other areas of the country or world. Additionally, smaller-sized programs may not have the resources to implement everything discussed. The key purpose of this entry is to provide students and instructors with tangible examples of processes, skills, and organizational structures that make for an effective local government GIS.

DA-23 - GIS&T and Marine Science

Image courtesy of the National Academy of Sciences Ocean Studies Board

 

GIS&T has traditionally provided effective technological solutions to the integration, visualization, and analysis of heterogeneous, georeferenced data on land. In recent years, our ability to measure change in the ocean is increasing, not only because of improved measuring devices and scientific techniques, but also because new GIS&T is aiding us in better understanding this dynamic environment. The domain has progressed from applications that merely collect and display data to complex simulation, modeling, and the development of new research methods and concepts.

DA-24 - GIS&T and Marketing

Marketing is about communicating, delivering, and exchanging goods and services that are desired by customers, clients, and the public alike. They identify the groups the enterprise is striving to serve, developing offerings which match their needs, and establishing exchange relationships which satisfy those needs while accomplishing enterprise objectives of profit, service and/or social impact. Marketers use their planning processes to scan the relevant environment for opportunities, select target markets with unmet or insufficiently met needs, and design marketing mix strategies to serve them. In all of these activities, the qualitative and quantitative measures of location and geography are key.  Delivery of marketing mix strategies relies on tasks such as marketing research, market segmentation and customer profiling, all of which GIS supports.  In addition, specialized marketing functions and emerging technologies also benefit from location analytics resources. 

DA-32 - GIS&T and Natural Resource Management

Geographic Information Systems (GIS) is a geospatial technology that has matured with the help of natural resource management applications. Since its early beginnings as an extension of cartography, GIS has been used to capture, manipulate, store, analyze and manage data. GIS has matured as additional sciences began to adopt and apply it to multidisciplinary problems. In the mid-90s, much of the emphasis moved to desktop GIS making the access and use more mainstream and capable on personal desktop computers. Government agencies with more available and distributed datasets through the internet enabled more applications and use across disciplines because of the access. Soil scientists, wildlife biologists, hydrologists, engineers, planners, and others could now pursue spatial problems efficiently and effectively. More and more advances were being made in the sciences due to the new technology. The following discussion will focus on the use and applications of GIS for natural resource management. Areas covered in this review will be for forestry, watershed analysis, wildlife management, and landscape analysis. First a background of the applications will be introduced followed by a discussion of their applicability and uses.

Pages