All Topics

A B C D E F G H I K L M N O P R S T U V W
CV-16 - Virtual and immersive environments
  • Discuss the nature and use of virtual environments, such as Google Earth
  • Explain how various data formats and software and hardware environments support immersive visualization
  • Compare and contrast the relative advantages of different immersive display systems used for cartographic visualization (e.g., CAVEs, GeoWalls)
  • Evaluate the extent to which a GeoWall or CAVE does or does not enhance understanding of spatial data
  • Explain how the virtual and immersive environments become increasingly more complex as we move from the relatively non-immersive VRML desktop environment to a stereoscopic display (e.g., a GeoWall) to a more fully immersive CAVE
CV-07 - Visual Hierarchy and Layout

Mapmaking, by digital or manual methods, involves taking complex geographic information and building a visual image with many components. Creating effective maps requires an understanding of how to construct the elements of the map into a coherent whole that executes the communicative purpose of the map. Visual hierarchy and layout are the cartographer’s tools for organizing the map and completing the map construction. The cartographer layers the mapped geography in an image into a visual hierarchy emphasizing some features and de-emphasizing others in vertical ordering of information. Likewise, the cartographer arranges the components of a map image—title, main map, inset map, north arrow, scale, legend, toolbar, etc.—into a layout that guides the reader’s eye around the horizontal plane of the map. The visual hierarchy and layout processes work together to create the structure of the map image.

CP-14 - Web GIS

Web GIS allows the sharing of GIS data, maps, and spatial processing across private and public computer networks. Understanding web GIS requires learning the roles of client and server machines and the standards and protocols around how they communicate to accomplish tasks. Cloud computing models have allowed web-based GIS operations to be scaled out to handle large jobs, while also enabling the marketing of services on a per-transaction basis.

A variety of toolkits allow the development of GIS-related websites and mobile apps. Some web GIS implementations bring together map layers and GIS services from multiple locations. In web environments, performance and security are two concerns that require heightened attention. App users expect speed, achievable through caching, indexing, and other techniques. Security precautions are necessary to ensure sensitive data is only revealed to authorized viewers.

Many organizations have embraced the web as a way to openly share spatial data at a relatively low cost. Also, the web-enabled expansion of spatial data production by nonexperts (sometimes known as “neogeography”) offers a rich field for alternative mappings and critical study of GIS and society.

PD-16 - Web GIS Programming

Web GIS programming involves creating, extending, utilizing, Web GIS or web mapping solutions to solve specific problems, build complete applications, or consume or produce data and geospatial processing services. With the expansion of the internet and availability of Web GIS or Web mapping options, web GIS programming is becoming a commonly required skill set in many organizations. Web GIS programming is a type of software development that provides a means of handling internet, browser-based software application development tasks which require unique solutions to web GIS or web mapping problems. In addition, a number of Web GIS software options offer application programming interfaces (APIs) that provide a means by which developers can leverage the published data and processing services of others to build and customize applications through standardized interfaces with external web GIS software, data, and services. Web GIS programming applies to mobile as well as desktop application development. A browser typically runs software applications by submitting Hypertext Transfer Protocol (HTTP) or Hypertext Transfer Protocol Secure (HTTPS) requests to a server hosting resources the application user wishes to access available through a Uniform Resource Locator (URL), and the server replies by providing resources or performing functions requested by the user. This entry reviews the fundamentals of web GIS programming, accompanying the Web Mapping and other entries in the Programming and Development section, the Web GIS entry in the Computing Platforms section, and the User Interface and User Experience (UI/UX) Design entry in the Cartography and Visualization section (Sack, 2017; Quinn, 2018; Roth, 2017).

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

AM-89 - Weighting schemes
  • Evaluate a fuzzy weighting scheme in terms of uncertainty and error propagation

Pages