2016 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
CV3-2 - Basic concepts of symbolization
  • List the variables used in the symbolization of map data for visual, tactile, haptic, auditory, and dynamic displays
  • Select effective symbols for map features based on the dimensionality and attributes of the geographic phenomena being mapped
  • Design map symbols with sufficient contrast to be distinguishable by typical users
  • Illustrate how a single geographic feature can be represented by various graphic primitives (e.g., land surface as a set of elevation points, as contour lines, as hypsometric layers or tints, and as a hillshaded surface)
  • Identify the visual variables (e.g., size, lightness, shape, hue) and graphic primitives (points, lines, areas) commonly used in maps to represent various geographic features at all attribute measurement levels (nominal, ordinal, interval, ratio)
DM1-1 - Basic data structures
  • Define basic data structure terminology (e.g., records, field, parent/child, nodes, pointers)
  • Analyze the relative storage efficiency of each of the basic data structures
  • Implement algorithms that store geospatial data to a range of data structures
  • Discuss the advantages and disadvantages of different data structures (e.g., arrays, linked lists, binary trees) for storing geospatial data
  • Differentiate among data models, data structures, and file structures
CV4-1 - Basic thematic mapping methods
  • Describe the design considerations for each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow map
  • Evaluate the strengths and limitations of each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow map
  • Explain why choropleth maps should (almost) never be used for mapping count data and suggest alternative methods for mapping count data
  • Choose suitable mapping methods for each attribute of a given type of feature in a GIS (e.g., roads with various attributes such as surface type, traffic flow, number of lanes, direction such as one-way)
  • Select base information suited to providing a frame of reference for thematic map symbols (e.g., network of major roads and state boundaries underlying national population map)
  • Create maps using each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow
  • Create well-designed legends using the appropriate conventions for the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow
AM7-7 - Bayesian methods
  • Define “prior and posterior distributions” and “Markov-Chain Monte Carlo”
  • Explain how the Bayesian perspective is a unified framework from which to view uncertainty
  • Compare and contrast Bayesian methods and classical “frequentist” statistical methods
OI2-3 - Budgeting for GIS management
  • Describe various approaches to the long-term funding of a GIS in an organization
  • Describe methods to evaluate the return on investment (ROI) of a GIS within an organization
  • Develop a budget for ongoing re-design and system improvement
  • Discuss the advantages and disadvantages of maintenance contracts for software, hardware, and data across an enterprise
  • Evaluate the adequacy of current investments in capital (e.g., facilities, hardware, software) and labor for a GIS
  • Justify changes to the investment in an enterprise GIS, including both cutbacks and increased expenses
AM4-1 - Buffers
  • Compare and contrast raster and vector definitions of buffers
  • Outline circumstances in which buffering around an object is useful in analysis
  • Explain why a buffer is a contour on a distance surface
GC3-1 - CA model structure
  • Analyze the advantages and limitations of CA geospatial representations
  • Explain how the use of CA to represent a geographical region relates to how places in a region are interconnected
  • Describe how CA might represent a geographical region
GC3-3 - CA simulation and calibration
  • Describe the challenges of calibrating CA models
  • Explain how temporal concepts are implemented in CA models
  • Describe error sources of CA models
GC3-2 - CA transition rule
  • Describe how local and global transitional rules are handled in CA
  • Describe how the rules of the Game of Life typically result in a continuously evolving pattern
  • Explain two geographical processes that could be effectively represented using CA
  • Explain two geographical processes that could not be effectively represented using CA
  • Describe classic CA transition rules
AM6-1 - Calculating surface derivatives
  • List the likely sources of error in slope and aspect maps derived from digital elevation models (DEMs) and state the circumstances under which these can be very severe
  • Outline how higher order derivatives of height can be interpreted
  • Explain how slope and aspect can be represented as the vector field given by the first derivative of height
  • Explain why the properties of spatial continuity are characteristic of spatial surfaces
  • Explain why zero slopes are indicative of surface specific points such as peaks, pits, and passes, and list the conditions necessary for each
  • Design an algorithm that calculates slope and aspect from a triangulated irregular network (TIN) model
  • Outline a number of different methods for calculating slope from a DEM

Pages