2018 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
DM-20 - Discrete entities
  • Discuss the human predilection to conceptualize geographic phenomena in terms of discrete entities
  • Compare and contrast differing epistemological and metaphysical viewpoints on the “reality” of geographic entities
  • Identify the types of features that need to be modeled in a particular GIS application or procedure
  • Identify phenomena that are difficult or impossible to conceptualize in terms of entities
  • Describe the difficulties in modeling entities with ill-defined edges
  • Describe the difficulties inherent in extending the “tabletop” metaphor of objects to the geographic environment
  • Evaluate the effectiveness of GIS data models for representing the identity, existence, and lifespan of entities
  • Justify or refute the conception of fields (e.g., temperature, density) as spatially-intensive attributes of (sometimes amorphous and anonymous) entities
  • Model “gray area” phenomena, such as categorical coverages (a.k.a. discrete fields), in terms of objects
  • Evaluate the influence of scale on the conceptualization of entities
  • Describe the perceptual processes (e.g., edge detection) that aid cognitive objectification
  • Describe particular entities in terms of space, time, and properties
FC-14 - Distance, Length, and Direction
  • Describe several different measures of distance between two points (e.g., Euclidean, Manhattan, network distance, spherical)
  • Explain how different measures of distance can be used to calculate the spatial weights matrix
  • Explain why estimating the fractal dimension of a sinuous line has important implications for the measurement of its length
  • Explain how fractal dimension can be used in practical applications of GIS
  • Explain the differences in the calculated distance between the same two places when data used are in different projections
  • Outline the implications of differences in distance calculations on real world applications of GIS, such as routing and determining boundary lengths and service areas
  • Estimate the fractal dimension of a sinuous line
  • Describe operations that can be performed on qualitative representations of direction
  • Explain any differences in the measured direction between two places when the data are presented in a GIS in different projections
  • Compute the mean of directional data
  • Compare and contrast how direction is determined and stated in raster and vector data
  • Define “direction” and its measurement in different angular measures

Pages