2018 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
AM-29 - Kriging methods
  • Describe the relationship between the semi-variogram and kriging
  • Explain why it is important to have a good model of the semi-variogram in kriging
  • Explain the concept of the kriging variance, and describe some of its shortcomings
  • Explain how block-kriging and its variants can be used to combine data sets with different spatial resolution (support)
  • Compare and contrast block-kriging with areal interpolation using proportional area weighting and dasymetric mapping
  • Outline the basic kriging equations in their matrix formulation
  • Conduct a spatial interpolation process using kriging from data description to final error map
  • Explain why kriging is more suitable as an interpolation method in some applications than others
KE-09 - Labor and management
  • Identify the positions necessary to design and implement a GIS
  • Discuss the advantages and disadvantages of outsourcing elements of the implementation of a geospatial system, such as data entry
  • Evaluate the labor needed in past cases to build a new geospatial enterprise
  • Create a budget of expected labor costs, including salaries, benefits, training, and other expenses
DC-02 - Land records
  • Distinguish between GIS, LIS, and CAD/CAM in the context of land records management
  • Evaluate the difference in accuracy requirements for deeds systems versus registration systems
  • Exemplify and compare deed descriptions in terms of how accurately they convey the geometry of a parcel
  • Distinguish between topological fidelity and geometric accuracy in the context of a plat map
FC-32 - Learning from experience
  • Explain how knowledge of the history of the development of enterprise GIS can aid in an implementation process
  • Evaluate case studies of past GISs to identify factors leading to success and failure
  • Discuss the evolution of isolated GIS projects to enterprise GIS
GS-23 - Legal mechanisms for sharing geospatial information
  • Describe contracts, licenses, and other mechanisms for sharing geospatial data
  • Outline the terms of a licensing agreement with a local engineering consulting firm that a manager of a county government GIS office would employ if charged to recoup revenue through sale and licensure of county data
GS-03 - Liability
  • Describe the nature of tort law generally and nuisance law specifically
  • Describe strategies for managing liability risk, including disclaimers and data quality standards
  • Describe cases of liability claims associated with misuse of geospatial information, erroneous information, and loss of proprietary interests
  • Differentiate among contract liability, tort liability, and statutory liability
PD-01 - Linear programming
  • Explain the role of constraint functions using the simplex method
  • Explain the role of objective functions in linear programming
  • Describe the structure of linear programs
  • Explain the role of constraint functions using the graphical method
  • Implement linear programs for spatial allocation problems
DM-16 - Linear referencing
  • Discuss dynamic segmentation as a process for transforming between linear and planar coordinate systems
  • Construct a data structure to contain point or linear geometry for database record events that are referenced by their position along a linear feature
  • Explain how linear referencing allows attributes to be displayed and analyzed that do not correspond precisely with the underlying segmentation of the network features
  • Describe how linear referencing can eliminate unnecessary segmentation of the underlying network features due to attribute value changes over time
  • Demonstrate how linear referenced locations are often much more intuitive and easy to find in the real world than geographic coordinates
DM-50 - Linear referencing systems
  • Describe an application in which a linear referencing system is particularly useful
  • Explain how the datum associated with a linear referencing system differs from a horizontal or vertical datum
  • Identify several different linear referencing methods (e.g., mileposts, reference posts, link and node) and compare them to planar grid systems
  • Identify the characteristics that all linear referencing systems have in common Unit GD4 Datums (core unit) “Horizontal” datums define the geometric relationship between a coordinate system grid and the Earth’s surface, where the Earth’s surface is approximated by an ellipsoid or other figure. “Vertical” datums are elevation reference surfaces, such as mean sea level.
  • Explain how a network can be used as the basis for reference as opposed to the more common rectangular coordinate systems
  • Discuss the magnitude and cause of error generated in the transformation from linear to planar coordinate systems
AM-23 - Local measures of spatial association
  • Describe the effect of non-stationarity on local indices of spatial association
  • Decompose Moran’s I and Geary’s c into local measures of spatial association
  • Compute the Gi and Gi* statistics
  • Explain how geographically weighted regression provides a local measure of spatial association
  • Explain how a weights matrix can be used to convert any classical statistic into a local measure of spatial association
  • Compare and contrast global and local statistics and their uses

Pages