2018 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
AM-14 - Spatial process models
  • Discuss the relationship between spatial processes and spatial patterns
  • Differentiate between deterministic and stochastic spatial process models
  • Describe a simple process model that would generate a given set of spatial patterns
FC-13 - Spatial queries
  • Demonstrate the syntactic structure of spatial and temporal operators in SQL
  • State questions that can be solved by selecting features based on location or spatial relationships
  • Construct a query statement to search for a specific spatial or temporal relationship
  • Construct a spatial query to extract all point objects that fall within a polygon
  • Compare and contrast attribute query and spatial query
DC-07 - Spatial sample types
  • Design point, transect, and area sampling strategies for given applications
  • Differentiate between situations in which one would use stratified random sampling and systematic sampling
  • Differentiate among random, systematic, stratified random, and stratified systematic unaligned sampling strategies
AM-26 - Spatial sampling for statistical analysis
  • List and describe several spatial sampling schemes and evaluate each one for specific applications
  • Differentiate between model-based and design-based sampling schemes
  • Design a sampling scheme that will help detect when space-time clusters of events occur
  • Create spatial samples under a variety of requirements, such as coverage, randomness, and transects
  • Describe sampling schemes for accurately estimating the mean of a spatial data set
DM-18 - Spatio-temporal GIS
  • Describe extensions to relational DBMS to represent temporal change in attributes
  • Evaluate the advantages and disadvantages of existing space-time models based on storage efficiency, query performance, ease of data entry, and ability to implement in existing software
  • Create a GIS database that models temporal information
  • Utilize two different space-time models to characterize a given scenario, such as a daily commute
  • Describe the architecture of data models (both field and object based) to represent spatio-temporal phenomena
  • Differentiate the two types of temporal information to be modeled in databases: database (or transaction) time and valid (or world) time
  • Identify whether it is important to represent temporal change in a particular GIS application
  • Describe SQL extensions for querying temporal change
DC-23 - State and regional coordinating bodies
  • Describe how state GIS councils can be used in enterprise GIS&T implementation processes
  • Explain the functions, mission, history, constituencies, and activities of your state GIS Council and related formal and informal bodies
  • Discuss how informal and formal regional bodies (e.g., Metro GIS) can help support GIS&T in an organization
  • Discuss the mission, history, constituencies, and activities of National States Geographic Information Council (NSGIC)
  • Determine if your state has a Geospatial Information Office (GIO) and discuss the mission, history, constituencies, and activities of a GIO
CV-05 - Statistical Mapping (Enumeration, Normalization, Classification, Dasymetric)
  • Discuss advantages and disadvantages of various data classification methods for choropleth mapping, including equal interval, quantiles, mean-standard deviation, natural breaks, and “optimal” methods
  • Demonstrate how different classification schemes produce very different maps from a single set of interval- or ratio-level data
  • Write algorithms to perform equal interval, quantiles, mean-standard deviation, natural breaks, and “optimal” classification for choropleth mapping
DC-13 - Stereoscopy and orthoimagery
  • Explain the relevance of the concept “parallax” in stereoscopic aerial imagery
  • Evaluate the advantages and disadvantages of photogrammetric methods and LiDAR for production of terrain elevation data
  • Specify the technical components of an aerotriangulation system
  • Outline the sequence of tasks involved in generating an orthoimage from a vertical aerial photograph
AM-20 - Stochastic processes
  • List the two basic assumptions of the purely random process
  • Exemplify non-stationarity involving first and second order effects
  • Differentiate between isotropic and anisotropic processes
  • Discuss the theory leading to the assumption of intrinsic stationarity
  • Outline the logic behind the derivation of long run expected outcomes of the independent random process using quadrat counts
  • Exemplify deterministic and spatial stochastic processes
  • Justify the stochastic process approach to spatial statistical analysis
FC-12 - Structured Query Language (SQL) and attribute queries
  • Define basic terms of query processing (e.g., SQL, primary and foreign keys, table join)
  • Create an SQL query to retrieve elements from a GIS
  • Explain the basic logic of SQL syntax
  • Demonstrate the basic syntactic structure of SQL

Pages