2018 QUARTER 03

A B C D E F G H I K L M N O P R S T U V W
DA-24 - GIS&T and Marketing

Marketing is about communicating, delivering, and exchanging goods and services that are desired by customers, clients, and the public alike. They identify the groups the enterprise is striving to serve, developing offerings which match their needs, and establishing exchange relationships which satisfy those needs while accomplishing enterprise objectives of profit, service and/or social impact. Marketers use their planning processes to scan the relevant environment for opportunities, select target markets with unmet or insufficiently met needs, and design marketing mix strategies to serve them. In all of these activities, the qualitative and quantitative measures of location and geography are key.  Delivery of marketing mix strategies relies on tasks such as marketing research, market segmentation and customer profiling, all of which GIS supports.  In addition, specialized marketing functions and emerging technologies also benefit from location analytics resources. 

DA-38 - GIS&T and Retail Business

Where should a retail business occur or locate within a region?  What would that trade area look like?  Should a retail expansion occur and how would that affect sales of other nearby existing locations?  Would a new retail location have the right demographic or socio-economic customer base to be profitable?  These are important questions for retailers to consider.  Within the evolving landscape of GIS, there is more geospatial data than ever before about the potential customer.  In retail, the application of maps and mapping technology is growing to include commercial real estate, logistics, and marketing to name a few.  There has been an increased momentum across commercial applications for geospatial technologies delivered in an easy to comprehend format for a variety of end users.  

DA-33 - GIS&T in Urban and Regional Planning

Professionals within the urban and regional planning domain have long utilized GIS&T to better understand cities through mapping urban data, representing new proposals, and conducting modeling and analysis to help address urban problems. These activities include spatial data collection and management, cartography, and a variety of applied spatial analysis techniques. Urban and regional planning has developed the sub-fields of planning support systems and Geodesign, both of which describe a combination of technologies and methods to incorporate GIS&T into collaborative planning contexts. In the coming years, shifting patterns of global urbanization, smart cities, and urban big data present emerging opportunities and challenges for urban planning professionals.

KE-24 - GIS&T Positions and Qualifications

Workforce needs tied to geospatial data continue to evolve.  Along with expansion in the absolute number of geospatial workers employed in the public and private sectors is greater diversity in the fields where their work has become important.  Together, these trends generate demand for new types of educational and professional development programs and opportunities. Colleges and universities have responded by offering structured academic programs ranging from minors and academic certificates to full GIS&T degrees.  Recent efforts also target experienced GIS&T professionals through technical certifications involving software applications and more comprehensive professional certifications designed to recognize knowledge, experience, and expertise.

KE-25 - GIS&T training and education
  • Compare and contrast training methods utilized in a non-profit to those employed in a local government agency
  • Discuss the National Research Council report on Learning to Think Spatially (2005) as it relates to spatial thinking skills needed by the GIS&T workforce
  • Find or create training resources appropriate for GIS&T workforce in a local government organization
  • Identify the particular skills necessary for users to perform tasks in three different workforce domains (e.g., small city, medium county agency, a business, or others)
  • Illustrate methods that are effective in providing opportunities for education and training when implementing a GIS in a small city
  • Teach necessary skills for users to successfully perform tasks in an enterprise GIS
  • Discuss different formats (tutorials, in house, online, instructor lead) for training and how they can be used by organizations
KE-23 - GIS&T workforce development
  • Describe issues that may hinder implementation and continued successful operation of a GIS if effective methods of staff development are not included in the process
  • Outline methods (programs or processes) that provide effective staff development opportunities for GIS&T
AM-22 - Global measures of spatial association
  • Describe the effect of the assumption of stationarity on global measures of spatial association
  • Justify, compute, and test the significance of the join count statistic for a pattern of objects
  • Compute the K function
  • Explain how a statistic that is based on combining all the spatial data and returning a single summary value or two can be useful in understanding broad spatial trends
  • Compute measures of overall dispersion and clustering of point datasets using nearest neighbor distance statistics
  • Compute Moran’s I and Geary’s c for patterns of attribute data measured on interval/ratio scales
  • Explain how the K function provides a scale-dependent measure of dispersion
DC-03 - Global Positioning System
  • Explain how GPS receivers calculate coordinate data
  • Discuss the relationship of GPS to the Global Satellite Navigation System
  • Explain “selective availability,” why it was discontinued in 2000, and what alternatives are available to the U.S. Department of Defense
  • Explain the relationship of the U.S. Global Positioning System with comparable systems sponsored by Russia and the European Union and the Global Navigation Satellite System
  • Discuss the role of GPS in location-based services (LBS)
  • Specify the features of a GPS receiver that is able to achieve geometric accuracies on the order of centimeters without post-processing
  • Explain the relevance of the concept of trilateration to both GPS positioning and control surveying
  • Perform differential correction of GPS data using reference data from a CORS station
  • List, define, and rank the sources of error associated with GPS positioning
  • Distinguish between horizontal and vertical accuracies when using coarse acquisition codes/standard positioning service (C-codes) and precision acquisition codes/precise positioning service (P-codes)
CP-06 - Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) represent a state-of-the-art acceleration technology for general-purpose computation. GPUs are based on many-core architecture that can deliver computing performance much higher than desktop computers based on Central Processing Units (CPUs). A typical GPU device may have hundreds or thousands of processing cores that work together for massively parallel computing. Basic hardware architecture and software standards that support the use of GPUs for general-purpose computation are illustrated by focusing on Nvidia GPUs and its software framework: CUDA. Many-core GPUs can be leveraged for the acceleration of spatial problem-solving.  

DM-08 - Grid compression methods
  • Illustrate the existing methods for compressing gridded data (e.g., run length encoding, Lempel-Ziv, wavelets)
  • Explain the advantage of wavelet compression
  • Evaluate the relative merits of grid compression methods for storage
  • Differentiate between lossy and lossless compression methods

Pages