2018 QUARTER 03

A B C D E F G H I K L M N O P R S T U V W
FC-35 - Openness

The philosophy of Openness and its use in diverse areas is attracting increasing attention from users, developers, businesses, governments, educators, and researchers around the world. The technological, socio-cultural, economic, legal, institutional, and philosophical issues related to its principles, applications, benefits, and barriers for its use are growing areas of research. The word “Open” is commonly used to denote adherence to the principles of Openness. Several fields are incorporating the use of Openness in their activities, some of them are of particular relevance to GIS&T (Geographic Information Science and Technology) such as: Open Data, Free and Open Source Software; and Open Standards for geospatial data, information, and technologies. This entry presents a definition of Openness, its importance in the area of GISc&T is introduced through a list of its benefits in the fields of Open Data, Open Source Software, and Open Standards. Then some of the barriers, myths, or inhibitors to Openness are presented using the case of Free and Open Source Software (FOSS) and FOSS for Geospatial Applications (FOSS4G).

FC-34 - Organizational models for coordinating GISs and/or program participants and stakeholders
  • Compare and contrast centralized, federated, and distributed models for managing information infrastructures
  • Describe the roles and relationships of GIS&T support staff
  • Exemplify how to make GIS&T relevant to top management
  • Describe different organizational models for coordinating GIS&T participants and stakeholders
  • Describe the stages of two different models of implementing a GIS within an organization
KE-33 - Organizational Models for GIS Management

Organizational structures and management practices for GIS programs are numerous and complex. This topic begins with an explanation of organizational and management concepts and context that are particularly relevant to GIS program and project management, including strategic planning and stakeholders. Specific types of organizations that typically use GIS technology are described and organizational structure types are explained. For GIS Program management, organizational placement, organizational components, and management control and policies are covered in depth. Multi-organizational GIS Programs are also discussed. Additional topics include management roles and technology trends that affect organizational structure. It concludes with a general description of GIS Project management. 

AM-43 - Other classic network problems
  • Describe several classic problems to which network analysis is applied (e.g., the traveling salesman problem, the Chinese postman problem)
  • Explain why heuristic solutions are generally used to address the combinatorially complex nature of these problems and the difficulty of solving them optimally
AM-04 - Overlay
  • Explain why the process “dissolve and merge” often follows vector overlay operations
  • Outline the possible sources of error in overlay operations
  • Compare and contrast the concept of overlay as it is implemented in raster and vector domains
  • Demonstrate how the geometric operations of intersection and overlay can be implemented in GIS
  • Demonstrate why the georegistration of datasets is critical to the success of any map overlay operation
  • Formalize the operation called map overlay using Boolean logic
  • Explain what is meant by the term “planar enforcement”
  • Exemplify applications in which overlay is useful, such as site suitability analysis
AM-38 - Pattern recognition
  • Differentiate among machine learning, data mining, and pattern recognition
  • Explain the principles of pattern recognition
  • Apply a simple spatial mean filter to an image as a means of recognizing patterns
  • Construct an edge-recognition filter
  • Design a simple spatial mean filter
  • Explain the outcome of an artificial intelligence analysis (e.g., edge recognition), including a discussion of what the human did not see that the computer identified and vice versa
FC-04 - Perception and cognition of geographic phenomena
  • Describe the differences between real phenomena, conceptual models, and GIS data representations thereof
  • Explain the role of metaphors and image schema in our understanding of geographic phenomena and geographic tasks
  • Compare and contrast the symbolic and connectionist theories of human cognition and memory and their ability to model various cases
  • Compare and contrast theories of spatial knowledge acquisition (e.g., Marr on vision, Piaget on childhood, Golledge on wayfinding)
  • Explore the contribution of linguistics to the study of spatial cognition and the role of natural language in the conceptualization of geographic phenomena
FC-03 - Philosophical perspectives
  • Define common philosophical theories that have influenced geography and science, such as logical positivism, Marxism, phenomenology, feminism, and critical theory
  • Identify the philosophical views and assumptions underlying the work of colleagues
  • Describe a brief history of major philosophical movements relating to the nature of space, time, geographic phenomena and human interaction with it
  • Compare and contrast the kinds of questions various philosophies ask, the methodologies they use, the answers they offer, and their applicability to different phenomena
  • Evaluate the influences of one’s own philosophical views and assumptions on GIS&T practices
  • Defend or refute the statement, “All data are theory-laden”
DM-36 - Physical Data Models

Constructs within a particular implementation of database management software guide the development of a physical data model, which is a product of a physical database design process. A physical data model documents how data are to be stored and accessed on storage media of computer hardware.  A physical data model is dependent on specific data types and indexing mechanisms used within database management system software.  Data types such as integers, reals, character strings, plus many others can lead to different storage structures. Indexing mechanisms such as region-trees and hash functions and others lead to differences in access performance.  Physical data modeling choices about data types and indexing mechanisms related to storage structures refine details of a physical database design. Data types associated with field, record and file storage structures together with the access mechanisms to those structures foster (constrain) performance of a database design. Since all software runs using an operating system, field, record, and file storage structures must be translated into operating system constructs to be implemented.  As such, all storage structures are contingent on the operating system and particular hardware that host data management software. 

FC-06 - Place and landscape
  • Explain how the concept of place encompasses more than just location
  • Evaluate the differences in how various parties think or feel differently about a place being modeled
  • Describe the elements of a sense of place or landscape that are difficult or impossible to adequately represent in GIS
  • Differentiate between space and place
  • Differentiate among elements of the meaning of a place that can or cannot be easily represented using geospatial technologies
  • Select a place or landscape with personal meaning and discuss its importance
  • Define the notions of cultural landscape and physical landscape

Pages