2018 QUARTER 04

A B C D E F G H I K L M N O P R S T U V W
DM-13 - The topological model
  • Define terms related to topology (e.g., adjacency, connectivity, overlap, intersect, logical consistency)
  • Describe the integrity constraints of integrated topological models (e.g., POLYVRT)
  • Discuss the historical roots of the Census Bureau’s creation of GBF/DIME as the foundation for the development of topological data structures
  • Explain why integrated topological models have lost favor in commercial GIS software
  • Evaluate the positive and negative impacts of the shift from integrated topological models
  • Discuss the role of graph theory in topological structures
  • Exemplify the concept of planar enforcement (e.g., TIN triangles)
  • Demonstrate how a topological structure can be represented in a relational database structure
  • Explain the advantages and disadvantages of topological data models
  • Illustrate a topological relation
DM-10 - The Triangulated Irregular Network (TIN) model
  • Describe how to generate a unique TIN solution using Delaunay triangulation
  • Describe the architecture of the TIN model
  • Construct a TIN manually from a set of spot elevations
  • Delineate a set of break lines that improve the accuracy of a TIN
  • Describe the conditions under which a TIN might be more practical than GRID
  • Demonstrate the use of the TIN model for different statistical surfaces (e.g., terrain elevation, population density, disease incidence) in a GIS software application
FC-27 - Thematic accuracy
  • Explain the distinction between thematic accuracy, geometric accuracy, and topological fidelity
  • Outline the SDTS and ISO TC211 standards for thematic accuracy
  • Discuss how measures of spatial autocorrelation may be used to evaluate thematic accuracy
  • Describe the component measures and the utility of a misclassification matrix
  • Describe the different measurement levels on which thematic accuracy is based
AM-86 - Theory of error propagation
  • Describe stochastic error models
  • Exemplify stochastic error models used in GIScience
FC-08 - Time
  • Differentiate between mathematical and phenomenological theories of the nature of time
  • Recognize the role that time plays in “static” GISystems
  • Compare and contrast models of a given spatial process using continuous and discrete perspectives of time
  • Select the temporal elements of geographic phenomena that need to be represented in particular GIS applications
  • Exemplify different temporal frames of reference: linear and cyclical, absolute and relative
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena
CV-10 - Typography

The selection of appropriate type on maps, far from an arbitrary design decision, is an integral part of establishing the content and tone of the map. Typefaces have personalities, which contribute to the rhetorical message of the map. It is important to understand how to assess typefaces for their personalities, but also to understand which typefaces may be more or less legible in a labeling context. Beyond the choice of typeface, effective map labels will have a visual hierarchy and allow the user to easily associate labels to their features and feature types. The cartographer must understand and modify typographic visual variables to support both the hierarchy and label-feature associations.

DC-24 - Unmanned Aerial Systems (UAS)

Unmanned Aerial Systems (UAS) are revolutionizing how GIS&T researchers and practitioners model and analyze our world. Compared to traditional remote sensing approaches, UAS provide a largely inexpensive, flexible, and relatively easy-to-use platform to capture high spatial and temporal resolution geospatial data. Developments in computer vision, specifically Structure from Motion (SfM), enable processing of UAS-captured aerial images to produce three-dimensional point clouds and orthophotos. However, many challenges persist, including restrictive legal environments for UAS flight, extensive data processing times, and the need for further basic research. Despite its transformative potential, UAS adoption still faces some societal hesitance due to privacy concerns and liability issues.

CV-38 - Usability Engineering & Evaluation

In this entry, we introduce tenets of usability engineering (UE) and user-centered design (UCD), interrelated approaches to ensuring that a map or visualization works for the target use. After a general introduction to these concepts and processes, we then discuss treatment of UE and UCD in research on cartography and geographic visualization. Finally, we present a classification of UE evaluation methods, including a general overview of each category of method and their application to cartographic user research.  

CV-13 - User Interface and User Experience (UI/UX) Design

Advances in personal computing and information technologies have fundamentally transformed how maps are produced and consumed, as many maps today are highly interactive and delivered online or through mobile devices. Accordingly, we need to consider interaction as a fundamental complement to representation in cartography and visualization. UI (user interface) / UX (user experience) describes a set of concepts, guidelines, and workflows for critically thinking about the design and use of an interactive product, map or otherwise. This entry introduces core concepts from UI/UX design important to cartography and visualization, focusing on issues related to visual design. First, a fundamental distinction is made between the use of an interface as a tool and the broader experience of an interaction, a distinction that separates UI design and UX design. Norman’s stages of interaction framework then is summarized as a guiding model for understanding the user experience with interactive maps, noting how different UX design solutions can be applied to breakdowns at different stages of the interaction. Finally, three dimensions of UI design are described: the fundamental interaction operators that form the basic building blocks of an interface, interface styles that implement these operator primitives, and recommendations for visual design of an interface.

Pages