2019 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids
CV-23 - Map analysis
  • Create a profile of a cross section through a terrain using a topographic map and a digital elevation model (DEM)
  • Measure point-feature movement and point-feature diffusion on maps
  • Describe maps that can be used to find direction, distance, or position, plan routes, calculate area or volume, or describe shape
  • Explain how maps can be used in determining an optimal route or facility selection
  • Explain how maps can be used in terrain analysis (e.g., elevation determination, surface profiles, slope, viewsheds, and gradient)
  • Explain how the types of distortion indicated by projection metadata on a map will affect map measurements
  • Explain the differences between true north, magnetic north, and grid north directional references
  • Compare and contrast the manual measurement of the areas of polygons on a map printed from a GIS with those calculated by the computer and discuss the implications these variations in measurement might have on map use
  • Determine feature counts of point, line, and area features on maps
  • Analyze spatial patterns of selected point, line, and area feature arrangements on maps
  • Calculate slope using a topographic map and a DEM
  • Calculate the planimetric and actual road distances between two locations on a topographic map
  • Plan an orienteering tour of a specific length that traverses slopes of an appropriate steepness and crosses streams in places that can be forded based on a topographic map
  • Describe the differences between azimuths, bearings, and other systems for indicating directions
CV-22 - Map interpretation
  • Identify the landforms represented by specific patterns in contours on a topographic map
  • Hypothesize about geographic processes by synthesizing the patterns found on one or more thematic maps or data visualizations
  • Match features on a map to corresponding features in the world
  • Compare and contrast the interpretation of landscape, geomorphic features, and human settlement types shown on a series of topographic maps from several different countries
CV-06 - Map Projections

Map projection is the process of transforming angular (spherical / elliptical) coordinates into planar coordinates. All map projections introduce distortion (e.g., to areas, angles, distances) in the resulting planar coordinates. Understanding what, where, and how much distortion is introduced is an important consideration for spatial computations and visual interpretation of spatial patterns, as well as for general aesthetics of any map.

CV-21 - Map reading
  • Discuss the advantages and disadvantages of using conventional symbols (e.g., blue=water, green=vegetation, Swiss cross=a hospital) on a map
  • Find specified features on a topographic map (e.g., gravel pit, mine entrance, well, land grant)
  • Match map labels to the corresponding features
  • Match the symbols on a map to the corresponding explanations in the legend
  • Execute a well designed legend that facilitates map reading
  • Explain how the anatomy of the eye and its visual sensor cells affect how one sees maps in terms of attention, acuity, focus, and color
  • Explain how memory limitations effect map reading tasks
AM-48 - Mathematical models of uncertainty: probability and statistics
  • Devise simple ways to represent probability information in GIS
  • Describe the basic principles of randomness and probability
  • Compute descriptive statistics and geostatistics of geographic data
  • Interpret descriptive statistics and geostatistics of geographic data
  • Recognize the assumptions underlying probability and geostatistics and the situations in which they are useful analytical tools
DM-31 - Mathematical models of vagueness: Fuzzy sets and rough sets
  • Compare and contrast the relative merits of fuzzy sets, rough sets, and other models
  • Differentiate between fuzzy set membership and probabilistic set membership
  • Explain the problems inherent in fuzzy sets
  • Create appropriate membership functions to model vague phenomena
KE-17 - Measuring costs
  • Explain how the saying “developing data is the largest single cost of implementing GIS” could be true for an organization that is already collecting data as part of its regular operations
  • Describe some non-fiduciary barriers to GIS implementation
  • Summarize what the literature suggests as means for overcoming some of the non-fiduciary barriers to GIS implementation
  • Outline sources of additional costs associated with development of an enterprise GIS
  • Outline the categories of costs that an organization should anticipate as it plans to design and implement a GIS
GS-08 - Mechanisms of control of geospatial information
  • Distinguish among the various intellectual property rights, including copyright, patent, trademark, business methods, and other rights
  • Explain how databases may be protected under U.S. copyright law
  • Describe advantages and disadvantages of “open” alternatives to copyright protection, such as the Creative Commons
  • Outline the intellectual property protection clause of a contract that a local government uses to license geospatial data to a community group
  • Explain how maps may be protected under U.S. copyright law
  • Differentiate geospatial information from other works protected under copyright law
DM-57 - Metadata
  • Define “metadata” in the context of the geospatial data set
  • Use a metadata utility to create a geospatial metadata document for a digital database you created
  • Formulate metadata for a graphic output that would be distributed to the general public
  • Formulate metadata for a geostatistical analysis that would be released to an experienced audience
  • Compose data integrity statements for a geostatistical or spatial analysis to be included in graphic output
  • Identify software tools available to support metadata creation
  • Interpret the elements of an existing metadata document
  • Explain why metadata production should be integrated into the data production and database development workflows, rather than treated as an ancillary activity
  • Outline the elements of the U.S. geospatial metadata standard
  • Explain the ways in which metadata increases the value of geospatial data

Pages