2019 QUARTER 04

A B C D E F G H I K L M N O P R S T U V W
DC-22 - Federal agencies and national and international organizations and programs
  • Describe the data programs provided by organizations such as The National Map, GeoSpatial One Stop, and National Integrated Land System
  • Discuss the mission, history, constituencies, and activities of international organizations such as Association of Geographic Information Laboratories for Europe (AGILE) and the European GIS Education Seminar (EUGISES)
  • Discuss the mission, history, constituencies, and activities of governmental entities such as the Bureau of Land Management (BLM), United States Geological Survey (USGS) and the Environmental Protection Agency (EPA) as they related to support of professionals and organizations
  • involved in GIS&T
  • Discuss the mission, history, constituencies, and activities of GeoSpatial One Stop
  • Discuss the mission, history, constituencies, and activities of the Open Geospatial Consortium (OGC), Inc.
  • Discuss the mission, history, constituencies, and activities of the Nation Integrated Land System (NILS)
  • Discuss the mission, history, constituencies, and activities of the Federal Geographic Data Committee (FGDC)
  • Discuss the mission, history, constituencies, and activities of the National Academies of Science Mapping Science Committee
  • Discuss the mission, history, constituencies, and activities of the USGS and its National Map vision
  • Discuss the mission, history, constituencies, and activities of University Consortium of Geographic Information Science (UCGIS) and the National Center for Geographic Information and Analysis (NCGIA)
  • Discuss the political, cultural, economic, and geographic characteristics of various countries that influence their adoption and use of GIS&T
  • Identify National Science Foundation (NSF) programs that support GIS&T research and education
  • Outline the principle concepts and goals of the “digital earth” vision articulated in 1998 by Vice President Al Gore
  • Assess the current status of Gore’s “digital earth”
GS-15 - Feminist Critiques of GIS

Feminist interactions with GIS started in the 1990s in the form of strong critiques against GIS inspired by feminist and postpositivist theories. Those critiques mainly highlighted a supposed epistemological dissonance between GIS and feminist scholarship. GIS was accused of being shaped by positivist and masculinist epistemologies, especially due to its emphasis on vision as the principal way of knowing. In addition, feminist critiques claimed that GIS was largely incompatible with positionality and reflexivity, two core concepts of feminist theory. Feminist critiques of GIS also discussed power issues embedded in GIS practices, including the predominance of men in the early days of the GIS industry and the development of GIS practices for the military and surveillance purposes.

At the beginning of the 21st century, feminist geographers reexamined those critiques and argued against an inherent epistemological incompatibility between GIS methods and feminist scholarship. They advocated for a reappropriation of GIS by feminist scholars in the form of critical feminist GIS practices. The critical GIS perspective promotes an unorthodox, reconstructed, and emancipatory set of GIS practices by critiquing dominant approaches of knowledge production, implementing GIS in critically informed progressive social research, and developing postpositivist techniques of GIS. Inspired by those debates, feminist scholars did reclaim GIS and effectively developed feminist GIS practices.

DC-09 - Field data technologies
  • Identify the measurement framework that applies to moving object tracking
  • Explain the advantage of real-time kinematic GPS in field data collection
  • Describe an application of hand-held computing or personal digital assistants (PDAs) for field data collection
  • Considering the measurement framework applied to moving object tracking, identify which of the dimensions of location, attribute, and time is fixed, which is controlled, and which is measured
  • Describe a real or hypothetical application of a sensor network in field data collection
  • Outline a combination of positioning techniques that can be used to support location-based services in a given environment
DM-23 - Fields in space and time
  • Define a field in terms of properties, space, and time
  • Formalize the notion of field using mathematical functions and calculus
  • Recognize the influences of scale on the perception and meaning of fields
  • Evaluate the field view’s description of “objects” as conceptual discretizations of continuous patterns
  • Identify applications and phenomena that are not adequately modeled by the field view
  • Identify examples of discrete and continuous change found in spatial, temporal, and spatio-temporal fields
  • Relate the notion of field in GIS to the mathematical notions of scalar and vector fields
  • Differentiate various sources of fields, such as substance properties (e.g., temperature), artificial constructs (e.g., population density), and fields of potential or influence (e.g., gravity)
CV-31 - Flow Maps

Flow mapping is a cartographic method of representing movement of phenomena. Maps of this type often depict the vector movement of entities (imports and exports, people, information) between geographic areas, but the general method also encompasses a range of graphics illustrating networks (e.g., transit and communications grids) and dynamic systems (e.g., wind and water currents). Most flow maps typically use line symbols of varying widths, lengths, shapes, colors, or speeds (in the case of animated flow maps) to show the quality, direction, and magnitude of movements. Aesthetic considerations for flow maps are numerous and their production is often done manually without significant automation. Flow maps frequently use distorted underlying geography to accommodate the placement of flow paths, which are often dramatically smoothed/abstracted into visually pleasing curves or simply straight lines. In the extreme, such maps lack a geographic coordinate space and are more diagrammatic, as in Sankey diagrams, alluvial diagrams, slope graphs, and circle migration plots. Whatever their form, good flow maps should effectively visualize the relative magnitude and direction of movement or potential movement between a one or more origins and destinations.

AM-41 - Flow modeling
  • Describe practical situations in which flow is conserved while splitting or joining at nodes of the network
  • Apply a maximum flow algorithm to calculate the largest flow from a source to a sink, using the edges of the network, subject to capacity constraints on the arcs and the conservation of flow
  • Explain how the concept of capacity represents an upper limit on the amount of flow through the network
  • Demonstrate how capacity is assigned to edges in a network using the appropriate data structure
FC-05 - From concepts to data
  • Define the following terms: data, information, knowledge, and wisdom
  • Describe the limitations of various information stores for representing geographic information, including the mind, computers, graphics, and text
  • Transform a conceptual model of information for a particular task into a data model
KE-11 - Funding
  • Identify potential sources of funding (internal and external) for a project or enterprise GIS
  • Create proposals and presentations to secure funding
  • Analyze previous attempts at funding to identify successful and unsuccessful techniques
AM-88 - Fuzzy aggregation operators
  • Compare and contrast Boolean and fuzzy logical operations
  • Compare and contrast several operators for fuzzy aggregation, including those for intersect and union
  • Exemplify one use of fuzzy aggregation operators
  • Describe how an approach to map overlay analysis might be different if region boundaries were fuzzy rather than crisp
  • Describe fuzzy aggregation operators
DM-41 - Fuzzy logic
  • Describe how linear functions are used to fuzzify input data (i.e., mapping domain values to linguistic variables)
  • Support or refute the statement by Lotfi Zadeh, that “As complexity rises, precise statements lose meaning and meaningful statements lose precision,” as it relates to GIS&T
  • Explain why fuzzy logic, rather then Boolean algebra models, can be useful for representing real world boundaries between different tree species