2020 QUARTER 01

CP-03 - High performance computing
  • Describe how the power increase in desktop computing has expanded the analytic methods that can be used for GIS&T
  • Exemplify how the power increase in desktop computing has expanded the analytic methods that can be used for GIS&T
DC-36 - Historical Maps in GIS

The use of historical maps in coordination with GIS aids scholars who are approaching a geographical study in which an historical approach is required or is interested in the geographical relationships between different historical representations of the landscape in cartographic document.  Historical maps allow the comparison of spatial relationships of past phenomena and their evolution over time and permit both qualitative and quantitative diachronic analysis. In this chapter, an explanation of the use of historical maps in GIS for the study of landscape and environment is offered. After a short theoretical introduction on the meaning of the term “historical map,” the reader will find the key steps in using historic maps in a GIS, a brief overview on the challenges in interpretation of historical maps, and some example applications.

DM-52 - Horizontal datums
  • Discuss appropriate applications of the various datum transformation options
  • Explain the difference between NAD 27 and NAD 83 in terms of ellipsoid parameters
  • Outline the historical development of horizontal datums
  • Explain the difference in coordinate specifications for the same position when referenced to NAD 27 and NAD 83
  • Explain the rationale for updating NAD 27 to NAD 83
  • Explain why all GPS data are originally referenced to the WGS 84 datum
  • Identify which datum transformation options are available and unavailable in a GIS software package
  • Define “horizontal datum” in terms of the relationship between a coordinate system and an approximation of the Earth’s surface
  • Describe the limitations of a Molodenski transformation and in what circumstances a higher parameter transformation such as Helmert may be appropriate
  • Determine the impact of a datum transformation from NAD 27 to NAD 83 for a given location using a conversion routine maintained by the U.S. National Geodetic Survey
  • Explain the methodology employed by the U.S. National Geodetic Survey to transform control points from NAD 27 to NAD 83
  • Perform a Molodenski transformation manually
  • Use GIS software to perform a datum transformation
AM-56 - Impacts of transformations
  • Compare and contrast the impacts of different conversion approaches, including the effect on spatial components
  • Create a flowchart showing the sequence of transformations on a data set (e.g., geometric and radiometric correction and mosaicking of remotely sensed data)
  • Prioritize a set of algorithms designed to perform transformations based on the need to maintain data integrity (e.g., converting a digital elevation model into a TIN)
KE-12 - Implementation planning
  • Discuss the importance of planning for implementation as opposed to “winging it”
  • Discuss pros and cons of different implementation strategies (e.g., spiral development versus waterfall development) given the needs of a particular system
  • Create a budget for the resources needed to implement the system
  • Create a schedule for the implementation of a geospatial system based on a complete design
GS-22 - Implications of distributed GIS&T
  • Describe the advantages and disadvantages to an organization in using GIS portal information from other organizations
  • Describe how inter-organization GIS portals may impact or influence issues related to social equity, privacy and data access
  • Discuss how distributed GIS&T may affect the nature of organizations and relationships among institutions
  • Suggest the possible societal and ethical implications of distributed GIS&T
PD-02 - Integer programming
  • Explain why integer programs are harder to solve than linear programs
  • Differentiate between a linear program and an integer program
AM-16 - Interpolation methods
  • Identify the spatial concepts that are assumed in different interpolation algorithms
  • Compare and contrast interpolation by inverse distance weighting, bi-cubic spline fitting, and kriging
  • Differentiate between trend surface analysis and deterministic spatial interpolation
  • Explain why different interpolation algorithms produce different results and suggest ways by which these can be evaluated in the context of a specific problem
  • Design an algorithm that interpolates irregular point elevation data onto a regular grid
  • Outline algorithms to produce repeatable contour-type lines from point datasets using proximity polygons, spatial averages, or inverse distance weighting
  • Implement a trend surface analysis using either the supplied function in a GIS or a regression function from any standard statistical package
  • Describe how surfaces can be interpolated using splines
  • Explain how the elevation values in a digital elevation model (DEM) are derived by interpolation from irregular arrays of spot elevations
  • Discuss the pitfalls of using secondary data that has been generated using interpolations (e.g., Level 1 USGS DEMs)
  • Estimate a value between two known values using linear interpolation (e.g., spot elevations, population between census years)
AM-17 - Intervisibility
  • Define “intervisibility”
  • Outline an algorithm to determine the viewshed (area visible) from specific locations on surfaces specified by DEMs
  • Perform siting analyses using specified visibility, slope, and other surface related constraints
  • Explain the sources and impact of errors that affect intervisibility analyses
AM-08 - Kernels and Density Estimation

Kernel density estimation is an important nonparametric technique to estimate density from point-based or line-based data. It has been widely used for various purposes, such as point or line data smoothing, risk mapping, and hot spot detection. It applies a kernel function on each observation (point or line) and spreads the observation over the kernel window. The kernel density estimate at a location will be the sum of the fractions of all observations at that location. In a GIS environment, kernel density estimation usually results in a density surface where each cell is rendered based on the kernel density estimated at the cell center. The result of kernel density estimation could vary substantially depending on the choice of kernel function or kernel bandwidth, with the latter having a greater impact. When applying a fixed kernel bandwidth over all of the observations, undersmoothing of density may occur in areas with only sparse observation while oversmoothing may be found in other areas. To solve this issue, adaptive or variable bandwidth approaches have been suggested.