Search Page

Showing 1 - 10 of 43
CV-23 - Map analysis
  • Create a profile of a cross section through a terrain using a topographic map and a digital elevation model (DEM)
  • Measure point-feature movement and point-feature diffusion on maps
  • Describe maps that can be used to find direction, distance, or position, plan routes, calculate area or volume, or describe shape
  • Explain how maps can be used in determining an optimal route or facility selection
  • Explain how maps can be used in terrain analysis (e.g., elevation determination, surface profiles, slope, viewsheds, and gradient)
  • Explain how the types of distortion indicated by projection metadata on a map will affect map measurements
  • Explain the differences between true north, magnetic north, and grid north directional references
  • Compare and contrast the manual measurement of the areas of polygons on a map printed from a GIS with those calculated by the computer and discuss the implications these variations in measurement might have on map use
  • Determine feature counts of point, line, and area features on maps
  • Analyze spatial patterns of selected point, line, and area feature arrangements on maps
  • Calculate slope using a topographic map and a DEM
  • Calculate the planimetric and actual road distances between two locations on a topographic map
  • Plan an orienteering tour of a specific length that traverses slopes of an appropriate steepness and crosses streams in places that can be forded based on a topographic map
  • Describe the differences between azimuths, bearings, and other systems for indicating directions
CV-24 - User-Centered Design and Evaluation
  • Describe the baseline expectations that a particular map makes of its audience
  • Compare and contrast the interpretive dangers (e.g., ecological fallacy, Modifiable Areal Unit Problem) that are inherent to different types of maps or visualizations and their underlying geographic data
  • Identify several uses for which a particular map is or is not effective
  • Identify the particular design choices that make a map more or less effective
  • Evaluate the effectiveness of a map for its audience and purpose
  • Design a testing protocol to evaluate the usability of a simple graphical user interface
  • Perform a rigorous sampled field check of the accuracy of a map
  • Discuss the use limitations of the USGS map accuracy standards for a range of projects demanding different levels of precision (e.g., driving directions vs. excavation planning)
DM-48 - Plane coordinate systems
  • Explain why plane coordinates are sometimes preferable to geographic coordinates
  • Identify the map projection(s) upon which UTM coordinate systems are based, and explain the relationship between the projection(s) and the coordinate system grid
  • Discuss the magnitude and cause of error associated with UTM coordinates
  • Differentiate the characteristics and uses of the UTM coordinate system from the Military Grid Reference System (MGRS) and the World Geographic Reference System (GEOREF)
  • Explain what State Plane Coordinates system (SPC) eastings and northings represent
  • Associate SPC coordinates and zone specifications with corresponding positions on a U.S. map or globe
  • Identify the map projection(s) upon which SPC coordinate systems are based, and explain the relationship between the projection(s) and the coordinate system grids
  • Discuss the magnitude and cause of error associated with SPC coordinates
  • Recommend the most appropriate plane coordinate system for applications at different spatial extents and justify the recommendation
  • Critique the U.S. Geological Survey’s choice of UTM as the standard coordinate system for the U.S. National Map
  • Describe the characteristics of the “national grids” of countries other than the U.S.
  • Explain what Universal Transverse Mercator (UTM) eastings and northings represent
  • Associate UTM coordinates and zone specifications with corresponding position on a world map or globe
AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids
CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-25 - Metadata, Quality, and Uncertainty
  • Describe a scenario in which possible errors in a map may impact subsequent decision making, such as a land use decision based on a soils map
  • Evaluate the uncertainty inherent in a map
  • Compare the decisions made using a map with a reliability overlay from those made using a map pair separating data and reliability, both drawn from the same dataset
  • Critique the assumption that maps can or should be “accurate”
GS-16 - Social critiques
  • Explain the argument that, throughout history, maps have been used to depict social relations
  • Explain the argument that GIS is “socially constructed”
  • Describe the use of GIS from a political ecology point of view (e.g., consider the use of GIS for resource identification, conservation, and allocation by an NGO in Sub-Saharan Africa)
  • Defend or refute the contention that critical studies have an identifiable influence on the development of the information society in general and GIScience in particular
  • Discuss the production, maintenance, and use of geospatial data by a government agency or private firm from the perspectives of a taxpayer, a community organization, and a member of a minority group
  • Explain how a tax assessor’s office adoption of GIS&T may affect power relations within a community
DM-56 - Georegistration
  • Differentiate rectification and orthorectification
  • Identify and explain an equation used to perform image-to-map registration
  • Identify and explain an equation used to perform image-to-image registration
  • Use GIS software to transform a given dataset to a specified coordinate system, projection, and datum
  • Explain the role and selection criteria for “ground control points” (GCPs) in the georegistration of aerial imagery
CV-22 - Map interpretation
  • Identify the landforms represented by specific patterns in contours on a topographic map
  • Hypothesize about geographic processes by synthesizing the patterns found on one or more thematic maps or data visualizations
  • Match features on a map to corresponding features in the world
  • Compare and contrast the interpretation of landscape, geomorphic features, and human settlement types shown on a series of topographic maps from several different countries
DC-22 - Federal agencies and national and international organizations and programs
  • Describe the data programs provided by organizations such as The National Map, GeoSpatial One Stop, and National Integrated Land System
  • Discuss the mission, history, constituencies, and activities of international organizations such as Association of Geographic Information Laboratories for Europe (AGILE) and the European GIS Education Seminar (EUGISES)
  • Discuss the mission, history, constituencies, and activities of governmental entities such as the Bureau of Land Management (BLM), United States Geological Survey (USGS) and the Environmental Protection Agency (EPA) as they related to support of professionals and organizations
  • involved in GIS&T
  • Discuss the mission, history, constituencies, and activities of GeoSpatial One Stop
  • Discuss the mission, history, constituencies, and activities of the Open Geospatial Consortium (OGC), Inc.
  • Discuss the mission, history, constituencies, and activities of the Nation Integrated Land System (NILS)
  • Discuss the mission, history, constituencies, and activities of the Federal Geographic Data Committee (FGDC)
  • Discuss the mission, history, constituencies, and activities of the National Academies of Science Mapping Science Committee
  • Discuss the mission, history, constituencies, and activities of the USGS and its National Map vision
  • Discuss the mission, history, constituencies, and activities of University Consortium of Geographic Information Science (UCGIS) and the National Center for Geographic Information and Analysis (NCGIA)
  • Discuss the political, cultural, economic, and geographic characteristics of various countries that influence their adoption and use of GIS&T
  • Identify National Science Foundation (NSF) programs that support GIS&T research and education
  • Outline the principle concepts and goals of the “digital earth” vision articulated in 1998 by Vice President Al Gore
  • Assess the current status of Gore’s “digital earth”

Pages