Search Page

Showing 1 - 6 of 6
DA-33 - GIS&T in Urban and Regional Planning

Professionals within the urban and regional planning domain have long utilized GIS&T to better understand cities through mapping urban data, representing new proposals, and conducting modeling and analysis to help address urban problems. These activities include spatial data collection and management, cartography, and a variety of applied spatial analysis techniques. Urban and regional planning has developed the sub-fields of planning support systems and Geodesign, both of which describe a combination of technologies and methods to incorporate GIS&T into collaborative planning contexts. In the coming years, shifting patterns of global urbanization, smart cities, and urban big data present emerging opportunities and challenges for urban planning professionals.

CP-23 - Google Earth Engine

Google Earth Engine (GEE) is a cloud-based platform for planetary scale geospatial data analysis and communication.  By placing more than 17 petabytes of earth science data and the tools needed to access, filter, perform, and export analyses in the same easy to use application, users are able to explore and scale up analyses in both space and time without any of the hassles traditionally encountered with big data analysis.  Constant development and refinement have propelled GEE into one of the most advanced and accessible cloud-based geospatial analysis platforms available, and the near real time data ingestion and interface flexibility means users can go from observation to presentation in a single window.

CP-26 - eScience, the Evolution of Science

Science—and research more broadly—face many challenges as its practitioners struggle to accommodate new challenges around reproducibility and openness.  The current practice of science limits access to knowledge, information and infrastructure, which in turn leads to inefficiencies, frustrations and a lack of rigor.  Many useful research outcomes are never used because they are too difficult to find, or to access, or to understand.

New computational methods and infrastructure provide opportunities to reconceptualize how science is conducted, how it is shared, how it is evaluated and how it is reused.  And new data sources changed what can be known, and how well, and how frequently.  This article describes some of the major themes of eScience/eResearch aimed at improving the process of doing science.

CP-04 - Artificial Intelligence Tools and Platforms for GIS

Artificial intelligence is the study of intelligence agents as demonstrated by machines. It is an interdisciplinary field involving computer science as well as, various kinds of engineering and science, for example, robotics, bio-medical engineering, that accentuates automation of human acts and intelligence through machines. AI represents state-of-the-art use of machines to bring about algorithmic computation and understanding of tasks that include learning, problem solving, mapping, perception, and reasoning. Given the data and a description of its properties and relations between objects of interest, AI methods can perform the aforementioned tasks. Widely applied AI capabilities, e.g. learning, are now achievable at large scale through machine learning (ML), large volumes of data and specialized computational machines. ML encompasses learning without any kind of supervision (unsupervised learning) and learning with full supervision (supervised learning). Widely applied supervised learning techniques include deep learning and other machine learning methods that require less data than deep learning e.g. support vector machines, random forests. Unsupervised learning examples include dictionary learning, independent component analysis, and autoencoders. For application tasks with less labeled data, both supervised and unsupervised techniques can be adapted in a semi-supervised manner to produce accurate models and to increase the size of the labeled training data.

CP-05 - Geospatial Technology Transfer Opportunities, and a Case Study of the Taghreed System

The technology transfer process moves research ideas from preliminary stages in research labs and universities to industrial products and startup companies. Such transfers significantly contribute to producing new computing platforms, services, and geospatial data products based on state-of-the-art research. To put technology transfer in perspective, this entry highlights key lessons learned through the process of transferring the Taghreed System from a research and development (R&D) lab to an industrial product. Taghreed is a system that supports scalable geospatial data analysis on social media microblogs data. Taghreed is primarily motivated by the large percentage of mobile microblogs users, over 80%, which has led to greater availability of geospatial content in microblogs beyond anytime in the digital data history. Taghreed has been commercialized and is powering a startup company that provides social media analytics based on full Twitter data archive.

CP-13 - Cyberinfrastructure

Cyberinfrastructure (sometimes referred to as e-infrastructure and e-science) integrates cutting-edge digital environments to support collaborative research and education for computation- and/or data-intensive problem solving and decision making (Wang 2010).