DC-30 - Georeferencing and Georectification

Georeferencing is the recording of the absolute location of a data point or data points. Georectification refers to the removal of geometric distortions between sets of data points, most often the removal of terrain, platform, and sensor induced distortions from remote sensing imagery. Georeferencing is a requisite task for all spatial data, as spatial data cannot be positioned in space or evaluated with respect to other data that are without being assigned a spatial coordinate within a defined coordinate system. Many data are implicitly georeferenced (i.e., are labeled with spatial reference information), such as points collected from a global navigation satellite system (GNSS). Data that are not labeled with spatial reference information can be georeferenced using a number of approaches, the most commonly applied of which are described in this article. The majority of approaches employ known reference locations (i.e., Ground Control Points) drawn from a reliable source (e.g., GNSS, orthophotography) to calibrate georeferencing models. Regardless of georeferencing approach, positional error is present. The accuracy of georeferencing (i.e., amount of positional error) should be quantified, typically by the root mean squared error between ground control points from a reference source and the georeferenced data product.
CP-21 - Social Networks
This entry introduces the concept of a social network (SN), its components, and how to weight those components. It also describes some spatial properties of SNs, and how to embed SNs into GIS. SNs are graph structures that consists of nodes and edges that traditionally exist in Sociology and are newer to GIScience. Nodes typically represent individual entities such as people or institutions, and edges represent interpersonal relationships, connections or ties. Many different mathematical metrics exist to characterize nodes, edges and the larger network. When geolocated, SNs are part of a class of spatial networks, more specifically, geographic networks (i.e. road networks, hydrological networks), that require special treatment because edges are non-planar, that is, they do not follow infrastructure or form a vector on the earth’s surface. Future research in this area is likely to take advantage of 21st Century datasets sourced from social media, GPS, wireless signals, and online interactions that each evidence geolocated personal relationships.