Search Page

Showing 1 - 10 of 10
DC-22 - Federal agencies and national and international organizations and programs
  • Describe the data programs provided by organizations such as The National Map, GeoSpatial One Stop, and National Integrated Land System
  • Discuss the mission, history, constituencies, and activities of international organizations such as Association of Geographic Information Laboratories for Europe (AGILE) and the European GIS Education Seminar (EUGISES)
  • Discuss the mission, history, constituencies, and activities of governmental entities such as the Bureau of Land Management (BLM), United States Geological Survey (USGS) and the Environmental Protection Agency (EPA) as they related to support of professionals and organizations
  • involved in GIS&T
  • Discuss the mission, history, constituencies, and activities of GeoSpatial One Stop
  • Discuss the mission, history, constituencies, and activities of the Open Geospatial Consortium (OGC), Inc.
  • Discuss the mission, history, constituencies, and activities of the Nation Integrated Land System (NILS)
  • Discuss the mission, history, constituencies, and activities of the Federal Geographic Data Committee (FGDC)
  • Discuss the mission, history, constituencies, and activities of the National Academies of Science Mapping Science Committee
  • Discuss the mission, history, constituencies, and activities of the USGS and its National Map vision
  • Discuss the mission, history, constituencies, and activities of University Consortium of Geographic Information Science (UCGIS) and the National Center for Geographic Information and Analysis (NCGIA)
  • Discuss the political, cultural, economic, and geographic characteristics of various countries that influence their adoption and use of GIS&T
  • Identify National Science Foundation (NSF) programs that support GIS&T research and education
  • Outline the principle concepts and goals of the “digital earth” vision articulated in 1998 by Vice President Al Gore
  • Assess the current status of Gore’s “digital earth”
AM-82 - Microsimulation and calibration of agent activities
  • Describe a “bottom-up” simulation from an activity-perspective with changes in the locations and/or activities the individual person (and/or vehicle) in space and time, in the activity patterns and space-time trajectories created by these activity patterns, and in the consequent emergent phenomena, such as traffic jams and land-use patterns
  • Describe how various parameters in an agent-based model can be modified to evaluate the range of behaviors possible with a model specification
  • Describe how measurements on the output of a model can be used to describe model behavior
AM-88 - Fuzzy aggregation operators
  • Compare and contrast Boolean and fuzzy logical operations
  • Compare and contrast several operators for fuzzy aggregation, including those for intersect and union
  • Exemplify one use of fuzzy aggregation operators
  • Describe how an approach to map overlay analysis might be different if region boundaries were fuzzy rather than crisp
  • Describe fuzzy aggregation operators
AM-48 - Mathematical models of uncertainty: probability and statistics
  • Devise simple ways to represent probability information in GIS
  • Describe the basic principles of randomness and probability
  • Compute descriptive statistics and geostatistics of geographic data
  • Interpret descriptive statistics and geostatistics of geographic data
  • Recognize the assumptions underlying probability and geostatistics and the situations in which they are useful analytical tools
DC-15 - Mission planning
  • Plan an aerial imagery mission in response to a given request for proposals and map of a study area, taking into consideration vertical and horizontal control, atmospheric conditions, time of year, and time of day
AM-13 - Multi-criteria evaluation
  • Describe the implementation of an ordered weighting scheme in a multiple-criteria aggregation
  • Compare and contrast the terms multi-criteria evaluation, weighted linear combination, and site suitability analysis
  • Differentiate between contributing factors and constraints in a multi-criteria application
  • Explain the legacy of multi-criteria evaluation in relation to cartographic modeling
  • Determine which method to use to combine criteria (e.g., linear, multiplication)
  • Create initial weights using the analytical hierarchy process (AHP)
  • Calibrate a linear combination model by adjusting weights using a test data set
DC-09 - Field data technologies
  • Identify the measurement framework that applies to moving object tracking
  • Explain the advantage of real-time kinematic GPS in field data collection
  • Describe an application of hand-held computing or personal digital assistants (PDAs) for field data collection
  • Considering the measurement framework applied to moving object tracking, identify which of the dimensions of location, attribute, and time is fixed, which is controlled, and which is measured
  • Describe a real or hypothetical application of a sensor network in field data collection
  • Outline a combination of positioning techniques that can be used to support location-based services in a given environment
AM-87 - Problems of currency, source, and scale
  • Describe the problem of conflation associated with aggregation of data collected at different times, from different sources, and to different scales and accuracy requirements
  • Explain how geostatistical techniques might be used to address such problems
DC-21 - Spatial data sharing among organizations
  • Describe the rationale for and against sharing data among organizations
  • Describe the barriers to information sharing
  • Describe methods used by organizations to facilitate data sharing
DC-02 - Land records
  • Distinguish between GIS, LIS, and CAD/CAM in the context of land records management
  • Evaluate the difference in accuracy requirements for deeds systems versus registration systems
  • Exemplify and compare deed descriptions in terms of how accurately they convey the geometry of a parcel
  • Distinguish between topological fidelity and geometric accuracy in the context of a plat map