Search Page

Showing 41 - 44 of 44
AM-48 - Mathematical models of uncertainty: probability and statistics
  • Devise simple ways to represent probability information in GIS
  • Describe the basic principles of randomness and probability
  • Compute descriptive statistics and geostatistics of geographic data
  • Interpret descriptive statistics and geostatistics of geographic data
  • Recognize the assumptions underlying probability and geostatistics and the situations in which they are useful analytical tools
AM-64 - Calculating surface derivatives
  • List the likely sources of error in slope and aspect maps derived from digital elevation models (DEMs) and state the circumstances under which these can be very severe
  • Outline how higher order derivatives of height can be interpreted
  • Explain how slope and aspect can be represented as the vector field given by the first derivative of height
  • Explain why the properties of spatial continuity are characteristic of spatial surfaces
  • Explain why zero slopes are indicative of surface specific points such as peaks, pits, and passes, and list the conditions necessary for each
  • Design an algorithm that calculates slope and aspect from a triangulated irregular network (TIN) model
  • Outline a number of different methods for calculating slope from a DEM
AM-87 - Problems of currency, source, and scale
  • Describe the problem of conflation associated with aggregation of data collected at different times, from different sources, and to different scales and accuracy requirements
  • Explain how geostatistical techniques might be used to address such problems
AM-13 - Multi-criteria evaluation
  • Describe the implementation of an ordered weighting scheme in a multiple-criteria aggregation
  • Compare and contrast the terms multi-criteria evaluation, weighted linear combination, and site suitability analysis
  • Differentiate between contributing factors and constraints in a multi-criteria application
  • Explain the legacy of multi-criteria evaluation in relation to cartographic modeling
  • Determine which method to use to combine criteria (e.g., linear, multiplication)
  • Create initial weights using the analytical hierarchy process (AHP)
  • Calibrate a linear combination model by adjusting weights using a test data set

Pages