Search Page

Showing 1 - 10 of 57
DA-31 - GIS&T and Libraries, Archives, and Museums

Libraries, archives, and museums (LAMs) are an important part of the GIS&T ecosystem and they engage in numerous activities that are critical for students, researchers, and practitioners. Traditionally these organizations have been at the forefront of developing infrastructures and services that connect researchers and others to historical and contemporary GIS data, including print maps. More recently, as a result of greater interest in spatial thinking and research, these organizations and institutions have become a place for instruction, outreach, and practice. This entry will discuss the historical role that LAMs have played in supporting and developing GIS&T as well as focus on current trends.

DA-18 - GIS&T and Disaster Management

Geographic Information Science and Technology (GIS&T) has a long-running tradition of using spatially-oriented methodologies and representational techniques such as cartography and mapping to address hazards and disasters. This tradition remains important as ever as global society faces newer and more complex challenges resulting from climate change and new challenges such as the COVID-19 pandemic. GIS&T has become an invisible technology within the disaster management cycle of planning and preparedness, response, recovery, and mitigation. Spatial technologies such as geographic information systems (GIS), remote sensing techniques, spatial data science, artificial intelligence, and machine learning are now widespread and pervasive. Despite these advancements, there is more that can be done to incorporate GIS&T perspectives into disaster management. In this article, we outline important conceptual ideas to consider on the use of GIS&T for disaster management, disaster management organizations that use GIS&T, and practical information to orient newcomers to this exciting and important interdisciplinary combination.

DA-08 - GIS&T and Archaeology

topo map and LiDAR image

Figure 1.  USGS topo map and bare earth (LiDAR) image of Tennessee’s Mound Bottom State Archaeological Area. Bare Earth DEM processed by Zada Law.

Archaeology provides a glimpse into the lives of past peoples and histories that may have otherwise been forgotten. Geographic Information Systems and Technology (GIS&T) has become an invaluable tool in this endeavor by advancing the identification, documentation, and study of archaeological resources. Large scale mapping techniques have increased the efficiency of site surveys even in challenging environments. GIS&T refers to such things as remote sensing, spatial analysis, and mapping tools. The use of GIS&T for archaeology is a truly interdisciplinary field as it borrows principles from geology, oceanography, botany, meteorology and more in order to further the science. This chapter discusses some of the primary GIS&T tools and techniques used in archaeology and the primary ways in which they are applied.

DA-33 - GIS&T in Urban and Regional Planning

Professionals within the urban and regional planning domain have long utilized GIS&T to better understand cities through mapping urban data, representing new proposals, and conducting modeling and analysis to help address urban problems. These activities include spatial data collection and management, cartography, and a variety of applied spatial analysis techniques. Urban and regional planning has developed the sub-fields of planning support systems and Geodesign, both of which describe a combination of technologies and methods to incorporate GIS&T into collaborative planning contexts. In the coming years, shifting patterns of global urbanization, smart cities, and urban big data present emerging opportunities and challenges for urban planning professionals.

DA-32 - GIS&T and Natural Resource Management

Geographic Information Systems (GIS) is a geospatial technology that has matured with the help of natural resource management applications. Since its early beginnings as an extension of cartography, GIS has been used to capture, manipulate, store, analyze and manage data. GIS has matured as additional sciences began to adopt and apply it to multidisciplinary problems. In the mid-90s, much of the emphasis moved to desktop GIS making the access and use more mainstream and capable on personal desktop computers. Government agencies with more available and distributed datasets through the internet enabled more applications and use across disciplines because of the access. Soil scientists, wildlife biologists, hydrologists, engineers, planners, and others could now pursue spatial problems efficiently and effectively. More and more advances were being made in the sciences due to the new technology. The following discussion will focus on the use and applications of GIS for natural resource management. Areas covered in this review will be for forestry, watershed analysis, wildlife management, and landscape analysis. First a background of the applications will be introduced followed by a discussion of their applicability and uses.

DA-13 - GIS&T in Criminal Justice and Law Enforcement

Linking crime and place has been the objective of crime mapping since the early nineteenth century. Contemporary scholars have since investigated spatio-temporal crime patterns to explain why crime concentrates in certain places during certain times. Collectively, this body of research has identified various environmental and situational factors that contribute to the formation of crime hot spots and spawned widespread crime prevention and reduction strategies commonly referred to as place-based policing.  Environmental criminology guides the bulk of this crime-and-place research and provides a means for interpreting place and crime. The chapter details theories behind place-based policing, examples of place-based policing strategies that leverage geographic information science and its associated technologies (GIS&T), and relevant data visualization tools used by law enforcement to implement place-based strategies to address crime.

DA-05 - GIS&T and Local Government

GIS is an important tool for local governments. It is utilized to provide spatial information, metrics, and visualizations to constituents, businesses, and decision-makers. Internally, a well-managed GIS can be the basis for innovation and process improvement and can be a single source for employees to find a plethora of integrated data. This entry discusses how GIS supports local government, important considerations for maintaining a successful local government GIS, and current trends. This entry is based on the author’s experience in a GIS program at a medium-sized city in the Rocky Mountain Region of the United States. Not everything discussed may apply to other areas of the country or world. Additionally, smaller-sized programs may not have the resources to implement everything discussed. The key purpose of this entry is to provide students and instructors with tangible examples of processes, skills, and organizational structures that make for an effective local government GIS.

FC-27 - Thematic Accuracy Assessment

Geographic Information System (GIS) applications often involve various analytical techniques and geographic data to produce thematic maps for gaining a better understanding of geospatial situations to support spatial decisions. Accuracy assessment of a thematic map is necessary for evaluating the quality of the research results and ensuring appropriate use of the geographic data. Thematic accuracy deals with evaluating the accuracy of the attributes or labels of mapped features by comparing them to a reference that is assumed to be true. The fundamental practice presents the remote sensing approach to thematic accuracy assessment as a good guidance. For instance, the accuracy of a remote sensing image can be represented as an error matrix when the map and reference classification are conducted based on categories. This entry introduces basic concepts and techniques used in conducting thematic accuracy with an emphasis on land cover classification based on remote sensing images. The entry first introduces concepts of spatial uncertainty and spatial data quality standards and further gives an example of how spatial data quality affects thematic accuracy. Additionally, the entry illustrates the techniques that can be used to access thematic accuracy as well as using spatial autocorrelation in thematic accuracy sampling design.

FC-21 - Resolution

Resolution in the spatial domain refers to the size of the smallest measurement unit observed or recorded for an object, such as pixels in a remote sensing image or line segments used to record a curve. Resolution, also called the measurement scale, is considered one of the four major dimensions of scale, along with the operational scale, observational scale, and cartographic scale. Like the broader concept of scale, resolution is a fundamental consideration in GIScience because it affects the reliability of a study and contributes to the uncertainties of the findings and conclusions. While resolution effects may never be eliminated, techniques such as fractals could be used to reveal the multi-resolution property of a phenomenon and help guide the selection of resolution level for a study.

DA-36 - GIS&T and Public Policy

Public policy is the formal and informal guiding principles that are used by governments and other decision-making entities to guide our everyday lives. Geographic Information Science and Technology (GIS&T) has had an impact on the public policy process since GIS&T’s earliest beginnings in the 1960s. Advances in the development and availability of both geospatial technology and geospatial data paralleled a growing use of data-driven rational planning and decision-making models in policy making at all levels of government. Today more than ever, successful public policy depends on high-quality data and the technology that communicates its meaning effectively. Beyond the rational application of scientific or systematic methods, public policy is about values and how values affect, and are affected by, policies. This requires delivery of credible information in a transparent, understandable form not only to decision makers responsible for adopting policy, but also to various categories of stakeholders whose behavior will be impacted in some way by the policy’s implementation. GIS&T continues to play an important role in that endeavor, including making value conflicts more seeable and knowable. Included in the entry is a summary of the public policy process and its participants, followed by a brief overview of how GIST’s role in public policy has evolved over the last 50 years. The entry concludes by outlining a sample of real-world applications and presenting a discussion of related issues and future considerations.

Pages