animated maps

CV-17 - Spatiotemporal Representation

Space and time are integral components of geographic information. There are many ways in which to conceptualize space and time in the geographic realm that stem from time geography research in the 1960s. Cartographers and geovisualization experts alike have grappled with how to represent spatiotemporal data visually. Four broad types of mapping techniques allow for a variety of representations of spatiotemporal data: (1) single static maps, (2) multiple static maps, (3) single dynamic maps, and (4) multiple dynamic maps. The advantages and limitations of these static and dynamic methods are discussed in this entry. For cartographers, identifying the audience and purpose, medium, available data, and available time to design the map are vital aspects to deciding between the different spatiotemporal mapping techniques. However, each of these different mapping techniques offers its own advantages and disadvantages to the cartographer and the map reader. This entry focuses on the mapping of time and spatiotemporal data, the types of time, current methods of mapping, and the advantages and limitations of representing spatiotemporal data.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

CV-17 - Spatiotemporal Representation

Space and time are integral components of geographic information. There are many ways in which to conceptualize space and time in the geographic realm that stem from time geography research in the 1960s. Cartographers and geovisualization experts alike have grappled with how to represent spatiotemporal data visually. Four broad types of mapping techniques allow for a variety of representations of spatiotemporal data: (1) single static maps, (2) multiple static maps, (3) single dynamic maps, and (4) multiple dynamic maps. The advantages and limitations of these static and dynamic methods are discussed in this entry. For cartographers, identifying the audience and purpose, medium, available data, and available time to design the map are vital aspects to deciding between the different spatiotemporal mapping techniques. However, each of these different mapping techniques offers its own advantages and disadvantages to the cartographer and the map reader. This entry focuses on the mapping of time and spatiotemporal data, the types of time, current methods of mapping, and the advantages and limitations of representing spatiotemporal data.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

CV-17 - Spatiotemporal Representation

Space and time are integral components of geographic information. There are many ways in which to conceptualize space and time in the geographic realm that stem from time geography research in the 1960s. Cartographers and geovisualization experts alike have grappled with how to represent spatiotemporal data visually. Four broad types of mapping techniques allow for a variety of representations of spatiotemporal data: (1) single static maps, (2) multiple static maps, (3) single dynamic maps, and (4) multiple dynamic maps. The advantages and limitations of these static and dynamic methods are discussed in this entry. For cartographers, identifying the audience and purpose, medium, available data, and available time to design the map are vital aspects to deciding between the different spatiotemporal mapping techniques. However, each of these different mapping techniques offers its own advantages and disadvantages to the cartographer and the map reader. This entry focuses on the mapping of time and spatiotemporal data, the types of time, current methods of mapping, and the advantages and limitations of representing spatiotemporal data.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

CV-17 - Spatiotemporal Representation

Space and time are integral components of geographic information. There are many ways in which to conceptualize space and time in the geographic realm that stem from time geography research in the 1960s. Cartographers and geovisualization experts alike have grappled with how to represent spatiotemporal data visually. Four broad types of mapping techniques allow for a variety of representations of spatiotemporal data: (1) single static maps, (2) multiple static maps, (3) single dynamic maps, and (4) multiple dynamic maps. The advantages and limitations of these static and dynamic methods are discussed in this entry. For cartographers, identifying the audience and purpose, medium, available data, and available time to design the map are vital aspects to deciding between the different spatiotemporal mapping techniques. However, each of these different mapping techniques offers its own advantages and disadvantages to the cartographer and the map reader. This entry focuses on the mapping of time and spatiotemporal data, the types of time, current methods of mapping, and the advantages and limitations of representing spatiotemporal data.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

Pages