basic analytical operations

AM-06 - Grid Operations and Map Algebra

Grid operations are manipulation and analytical computations performed on raster data. Map Algebra is a language for organizing and implementing grid operations in Geographic Information Systems (GIS) software, and is typically categorized into Local, Focal, and Zonal functions, where each function typically ingests one or more grids and outputs a new grid. The value of a specific grid cell in the output grid for Local functions is determined from the value(s) of the analogous cell position(s) in the input grid(s), for Focal functions from the grid cell values drawn from a neighborhood around the specific output grid cell, and for Zonal functions from a set of grid cells specified in a separate zone grid. Individual functions within a category vary by applying a different arithmetic, statistical, or other type of operator to the function. Map Algebra also includes Global and Block function categories. Grid operations can be categorized as data manipulation procedures or within domain-specific applications, such as terrain analysis or image processing. Grid operations are employed in a variety of GIS-based analyses, but are particularly widely used for suitability modeling and environmental analyses.

FC-40 - Neighborhoods

Neighborhoods mean different things in varied contexts like computational geometry, administration and planning, as well as urban geography and other fields. Among the multiple contexts, computational geometry takes the most abstract and data-oriented approach: polygon neighborhoods refer to polygons sharing a boundary or a point, and point neighborhoods are defined by connected Thiessen polygons or other more complicated algorithms. Neighborhoods in some regions can be a practical and clearly delineated administration or planning units. In urban geography and some related social sciences, the terms neighborhood and community have been used interchangeably on many occasions, and neighborhoods can be a fuzzy and general concept with no clear boundaries such that they cannot be easily or consensually defined. Neighborhood effects have a series of unique meanings and several delineation methods are commonly used to define social and environmental effects in health applications.

AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids
AM-03 - Buffers

This short article introduces the definition of buffer and explains how buffers are created for single or multiple geographic features of different geometric types. It also discusses how buffers are generated differently in vector and raster data models and based on the concept of cost.

FC-40 - Neighborhoods

Neighborhoods mean different things in varied contexts like computational geometry, administration and planning, as well as urban geography and other fields. Among the multiple contexts, computational geometry takes the most abstract and data-oriented approach: polygon neighborhoods refer to polygons sharing a boundary or a point, and point neighborhoods are defined by connected Thiessen polygons or other more complicated algorithms. Neighborhoods in some regions can be a practical and clearly delineated administration or planning units. In urban geography and some related social sciences, the terms neighborhood and community have been used interchangeably on many occasions, and neighborhoods can be a fuzzy and general concept with no clear boundaries such that they cannot be easily or consensually defined. Neighborhood effects have a series of unique meanings and several delineation methods are commonly used to define social and environmental effects in health applications.

AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids
AM-03 - Buffers

This short article introduces the definition of buffer and explains how buffers are created for single or multiple geographic features of different geometric types. It also discusses how buffers are generated differently in vector and raster data models and based on the concept of cost.

FC-40 - Neighborhoods

Neighborhoods mean different things in varied contexts like computational geometry, administration and planning, as well as urban geography and other fields. Among the multiple contexts, computational geometry takes the most abstract and data-oriented approach: polygon neighborhoods refer to polygons sharing a boundary or a point, and point neighborhoods are defined by connected Thiessen polygons or other more complicated algorithms. Neighborhoods in some regions can be a practical and clearly delineated administration or planning units. In urban geography and some related social sciences, the terms neighborhood and community have been used interchangeably on many occasions, and neighborhoods can be a fuzzy and general concept with no clear boundaries such that they cannot be easily or consensually defined. Neighborhood effects have a series of unique meanings and several delineation methods are commonly used to define social and environmental effects in health applications.

AM-03 - Buffers

This short article introduces the definition of buffer and explains how buffers are created for single or multiple geographic features of different geometric types. It also discusses how buffers are generated differently in vector and raster data models and based on the concept of cost.

AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids

Pages