Data Considerations

CV-25 - Metadata, Quality, and Uncertainty
  • Describe a scenario in which possible errors in a map may impact subsequent decision making, such as a land use decision based on a soils map
  • Evaluate the uncertainty inherent in a map
  • Compare the decisions made using a map with a reliability overlay from those made using a map pair separating data and reliability, both drawn from the same dataset
  • Critique the assumption that maps can or should be “accurate”
CV-20 - Raster Formats and Sources

Raster data is commonly used by cartographers in concert with vector data. Choice of raster file format is important when using raster data or producing raster output from vector data. Raster formats are designed for specific purposes and have limitations in color representation and data loss. The simplest raster formats are just a single two-dimensional array of pixels, where multi-band raster datasets use additional data values to represent color or other data. The article covers considerations for the intended use of raster formats. Formats and resolutions appropriate for the web may not be appropriate for print or higher resolution devices. Several types of raster sources are available including single band measures, imagery, and existing raster maps or basemaps. The future of raster will evolve as more formats, sources, and computational improvements are made.

CV-25 - Metadata, Quality, and Uncertainty
  • Describe a scenario in which possible errors in a map may impact subsequent decision making, such as a land use decision based on a soils map
  • Evaluate the uncertainty inherent in a map
  • Compare the decisions made using a map with a reliability overlay from those made using a map pair separating data and reliability, both drawn from the same dataset
  • Critique the assumption that maps can or should be “accurate”
CV-20 - Raster Formats and Sources

Raster data is commonly used by cartographers in concert with vector data. Choice of raster file format is important when using raster data or producing raster output from vector data. Raster formats are designed for specific purposes and have limitations in color representation and data loss. The simplest raster formats are just a single two-dimensional array of pixels, where multi-band raster datasets use additional data values to represent color or other data. The article covers considerations for the intended use of raster formats. Formats and resolutions appropriate for the web may not be appropriate for print or higher resolution devices. Several types of raster sources are available including single band measures, imagery, and existing raster maps or basemaps. The future of raster will evolve as more formats, sources, and computational improvements are made.

CV-20 - Raster Formats and Sources

Raster data is commonly used by cartographers in concert with vector data. Choice of raster file format is important when using raster data or producing raster output from vector data. Raster formats are designed for specific purposes and have limitations in color representation and data loss. The simplest raster formats are just a single two-dimensional array of pixels, where multi-band raster datasets use additional data values to represent color or other data. The article covers considerations for the intended use of raster formats. Formats and resolutions appropriate for the web may not be appropriate for print or higher resolution devices. Several types of raster sources are available including single band measures, imagery, and existing raster maps or basemaps. The future of raster will evolve as more formats, sources, and computational improvements are made.

CV-25 - Metadata, Quality, and Uncertainty
  • Describe a scenario in which possible errors in a map may impact subsequent decision making, such as a land use decision based on a soils map
  • Evaluate the uncertainty inherent in a map
  • Compare the decisions made using a map with a reliability overlay from those made using a map pair separating data and reliability, both drawn from the same dataset
  • Critique the assumption that maps can or should be “accurate”
CV-20 - Raster Formats and Sources
  • Explain how color fastness and color consistency are ensured in map production
  • Compare outputs of the same map at various low and high resolutions
  • Differentiate among the various raster map outputs (JPEG, GIF, TIFF) and various vector formats (PDF, Adobe Illustrator Postscript)
  • Compare and contrast the file formats suited to presentation of maps on the Web to those suited to publication in high resolution contexts
  • Compare and contrast the issues that arise for map production using black-and-white and fourcolor process specifications
  • Outline the process for the digital production of offset press printed maps, including reference to feature and color separates, feature and map composites, and resolution
  • Critique typographic integrity in export formats (e.g., some file export processes break type into letters degrading searchability, font processing, and reliability of Raster Image Processing)
  • Prepare a map file for CMYK publication in a book
  • Prepare a map file for RGB presentation on a Web site
  • Discuss the purpose of advanced production methods (e.g., stochastic screening, hexachrome color, color management and device profiles, trapping, overprinting)
CV-03 - Vector Formats and Sources
  • List the data required to explore a specified problem
  • Discuss the extent, classification, and currency of government data sources and their influence on mapping
  • List the data required to compile a map that conveys a specified message
  • Discuss the issue of conflation of data from different sources or for different uses as it relates to mapping
  • Describe a situation in which it would be acceptable to use smaller-scale data sources for compilation to compile a larger scale map
  • Describe the copyright issues involved in various cartographic source materials
  • Explain how data acquired from primary sources, such as satellite imagery and GPS, differ from data compiled from maps, such as DLGs
  • Explain how digital data compiled from map sources influences how subsidiary maps are compiled and used
  • Explain how geographic names databases (i.e., gazetteer) are used for mapping
  • Explain how the inherent properties of digital data, such as Digital Elevation Models, influence how maps can be compiled from them
  • Identify the types of attributes that will be required to map a particular distribution for selected geographic features
  • Determine the standard scale of compilation of government data sources
  • Assess the data quality of a source dataset for appropriateness for a given mapping task, including an evaluation of the data resolution, extent, currency or date of compilation, and level of generalization in the attribute classification
  • Compile a map using at least three data sources
CV-20 - Raster Formats and Sources
  • Explain how color fastness and color consistency are ensured in map production
  • Compare outputs of the same map at various low and high resolutions
  • Differentiate among the various raster map outputs (JPEG, GIF, TIFF) and various vector formats (PDF, Adobe Illustrator Postscript)
  • Compare and contrast the file formats suited to presentation of maps on the Web to those suited to publication in high resolution contexts
  • Compare and contrast the issues that arise for map production using black-and-white and fourcolor process specifications
  • Outline the process for the digital production of offset press printed maps, including reference to feature and color separates, feature and map composites, and resolution
  • Critique typographic integrity in export formats (e.g., some file export processes break type into letters degrading searchability, font processing, and reliability of Raster Image Processing)
  • Prepare a map file for CMYK publication in a book
  • Prepare a map file for RGB presentation on a Web site
  • Discuss the purpose of advanced production methods (e.g., stochastic screening, hexachrome color, color management and device profiles, trapping, overprinting)
CV-25 - Metadata, Quality, and Uncertainty
  • Describe a scenario in which possible errors in a map may impact subsequent decision making, such as a land use decision based on a soils map
  • Evaluate the uncertainty inherent in a map
  • Compare the decisions made using a map with a reliability overlay from those made using a map pair separating data and reliability, both drawn from the same dataset
  • Critique the assumption that maps can or should be “accurate”

Pages