History and Trends

CV-01 - Cartography and Science

"Science" is used both to describe a general, systematic approach to understanding the world and to refer to that approach as it is applied to a specific phenomenon of interest, for example, "geographic information science." The scientific method is used to develop theories that explain phenomena and processes. It consists of an iterative cycle of several steps: proposing a hypothesis, devising a way to make empirical observations that test that hypothesis, and finally, refining the hypothesis based on the empirical observations. "Scientific cartography" became a dominant mode of cartographic research and inquiry after World War II, when there was increased focus on the efficacy of particular design decisions and how particular maps were understood by end users. This entry begins with a brief history of the development of scientific cartographic approaches, including how they are deployed in map design research today. Next it discusses how maps have been used by scientists to support scientific thinking. Finally, it concludes with a discussion of how maps are used to communicate the results of scientific thinking.

CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-01 - Cartography and Science

"Science" is used both to describe a general, systematic approach to understanding the world and to refer to that approach as it is applied to a specific phenomenon of interest, for example, "geographic information science." The scientific method is used to develop theories that explain phenomena and processes. It consists of an iterative cycle of several steps: proposing a hypothesis, devising a way to make empirical observations that test that hypothesis, and finally, refining the hypothesis based on the empirical observations. "Scientific cartography" became a dominant mode of cartographic research and inquiry after World War II, when there was increased focus on the efficacy of particular design decisions and how particular maps were understood by end users. This entry begins with a brief history of the development of scientific cartographic approaches, including how they are deployed in map design research today. Next it discusses how maps have been used by scientists to support scientific thinking. Finally, it concludes with a discussion of how maps are used to communicate the results of scientific thinking.

CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-01 - Cartography and Science
  • Discuss the perspectives of Brian Harley and others on the political motivation for the development of certain kinds of maps
  • Discuss the Swiss influence on map design and production, highlighting Imhof’s contributions
  • Outline the development of some of the major map projections (e.g., Mercator, Gnomonic, Robinson)
  • Explain how Bertin has influenced trends in cartographic symbolization
  • Explain how technological changes have affected cartographic design and production
  • Explain the impact of advances in visualization methods on the evolution of cartography
  • Compare and contrast cartographic developments in various countries and world regions such as Switzerland, France, China, the Middle East, and Greece
  • Discuss the influence of some cartographers of the 16th and 17th centuries (Mercator, Ortelius, Jansson, Homann and others)
  • Describe how compilation, production, and distribution methods used in map-making have evolved
  • Describe how symbolization methods used in map-making have evolved
  • Describe the contributions by Robinson, Jenks, Raisz, and others to U.S. academic cartography
  • Discuss the relationship between the history of exploration and the development of a more accurate map of the world
CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-01 - Cartography and Science
  • Discuss the perspectives of Brian Harley and others on the political motivation for the development of certain kinds of maps
  • Discuss the Swiss influence on map design and production, highlighting Imhof’s contributions
  • Outline the development of some of the major map projections (e.g., Mercator, Gnomonic, Robinson)
  • Explain how Bertin has influenced trends in cartographic symbolization
  • Explain how technological changes have affected cartographic design and production
  • Explain the impact of advances in visualization methods on the evolution of cartography
  • Compare and contrast cartographic developments in various countries and world regions such as Switzerland, France, China, the Middle East, and Greece
  • Discuss the influence of some cartographers of the 16th and 17th centuries (Mercator, Ortelius, Jansson, Homann and others)
  • Describe how compilation, production, and distribution methods used in map-making have evolved
  • Describe how symbolization methods used in map-making have evolved
  • Describe the contributions by Robinson, Jenks, Raisz, and others to U.S. academic cartography
  • Discuss the relationship between the history of exploration and the development of a more accurate map of the world
CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-01 - Cartography and Science
  • Discuss the perspectives of Brian Harley and others on the political motivation for the development of certain kinds of maps
  • Discuss the Swiss influence on map design and production, highlighting Imhof’s contributions
  • Outline the development of some of the major map projections (e.g., Mercator, Gnomonic, Robinson)
  • Explain how Bertin has influenced trends in cartographic symbolization
  • Explain how technological changes have affected cartographic design and production
  • Explain the impact of advances in visualization methods on the evolution of cartography
  • Compare and contrast cartographic developments in various countries and world regions such as Switzerland, France, China, the Middle East, and Greece
  • Discuss the influence of some cartographers of the 16th and 17th centuries (Mercator, Ortelius, Jansson, Homann and others)
  • Describe how compilation, production, and distribution methods used in map-making have evolved
  • Describe how symbolization methods used in map-making have evolved
  • Describe the contributions by Robinson, Jenks, Raisz, and others to U.S. academic cartography
  • Discuss the relationship between the history of exploration and the development of a more accurate map of the world
CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization

Pages