Relationships

DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena
DM-26 - Mereology: structural relationships
  • Describe particular geographic phenomena in terms of their place in mereonomic hierarchies (parts and composites)
  • Explain the contributions of formal mathematical methods such as graph theory to the study and application of geographic structures
  • Represent structural relationships in GIS data
  • Explain the effects of spatial or temporal scale on the perception of structure
  • Explain the modeling of structural relationships in standard GIS data models, such as stored topology
  • Identify phenomena that are best understood as networks
DM-25 - Categories
  • Explain the human tendency to simplify the world using categories
  • Identify specific examples of categories of entities (i.e., common nouns), properties (i.e., adjectives), space (i.e., regions), and time (i.e., eras)
  • Explain the role of categories in common-sense conceptual models, everyday language, and analytical procedures
  • Recognize and manage the potential problems associated with the use of categories (e.g., the ecological fallacy)
  • Construct taxonomies and dictionaries (also known as formal ontologies) to communicate systems of categories
  • Describe the contributions of category theory to understanding the internal structure of categories
  • Document the personal, social, and/or institutional meaning of categories used in GIS applications
  • Create or use GIS data structures to represent categories, including attribute columns, layers/themes, shapes, and legends
  • Use categorical information in analysis, cartography, and other GIS processes, avoiding common interpretation mistakes
  • Reconcile differing common-sense and official definitions of common geospatial categories of entities, attributes, space, and time
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena
DM-26 - Mereology: structural relationships
  • Describe particular geographic phenomena in terms of their place in mereonomic hierarchies (parts and composites)
  • Explain the contributions of formal mathematical methods such as graph theory to the study and application of geographic structures
  • Represent structural relationships in GIS data
  • Explain the effects of spatial or temporal scale on the perception of structure
  • Explain the modeling of structural relationships in standard GIS data models, such as stored topology
  • Identify phenomena that are best understood as networks
DM-25 - Categories
  • Explain the human tendency to simplify the world using categories
  • Identify specific examples of categories of entities (i.e., common nouns), properties (i.e., adjectives), space (i.e., regions), and time (i.e., eras)
  • Explain the role of categories in common-sense conceptual models, everyday language, and analytical procedures
  • Recognize and manage the potential problems associated with the use of categories (e.g., the ecological fallacy)
  • Construct taxonomies and dictionaries (also known as formal ontologies) to communicate systems of categories
  • Describe the contributions of category theory to understanding the internal structure of categories
  • Document the personal, social, and/or institutional meaning of categories used in GIS applications
  • Create or use GIS data structures to represent categories, including attribute columns, layers/themes, shapes, and legends
  • Use categorical information in analysis, cartography, and other GIS processes, avoiding common interpretation mistakes
  • Reconcile differing common-sense and official definitions of common geospatial categories of entities, attributes, space, and time
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena
DM-26 - Mereology: structural relationships
  • Describe particular geographic phenomena in terms of their place in mereonomic hierarchies (parts and composites)
  • Explain the contributions of formal mathematical methods such as graph theory to the study and application of geographic structures
  • Represent structural relationships in GIS data
  • Explain the effects of spatial or temporal scale on the perception of structure
  • Explain the modeling of structural relationships in standard GIS data models, such as stored topology
  • Identify phenomena that are best understood as networks
DM-25 - Categories
  • Explain the human tendency to simplify the world using categories
  • Identify specific examples of categories of entities (i.e., common nouns), properties (i.e., adjectives), space (i.e., regions), and time (i.e., eras)
  • Explain the role of categories in common-sense conceptual models, everyday language, and analytical procedures
  • Recognize and manage the potential problems associated with the use of categories (e.g., the ecological fallacy)
  • Construct taxonomies and dictionaries (also known as formal ontologies) to communicate systems of categories
  • Describe the contributions of category theory to understanding the internal structure of categories
  • Document the personal, social, and/or institutional meaning of categories used in GIS applications
  • Create or use GIS data structures to represent categories, including attribute columns, layers/themes, shapes, and legends
  • Use categorical information in analysis, cartography, and other GIS processes, avoiding common interpretation mistakes
  • Reconcile differing common-sense and official definitions of common geospatial categories of entities, attributes, space, and time
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena

Pages