spatiotemporal dynamics

AM-80 - Capturing Spatiotemporal Dynamics in Computational Modeling

We live in a dynamic world that includes various types of changes at different locations over time in natural environments as well as in human societies. Modern sensing technology, location-aware technology and mobile technology have made it feasible to collect spatiotemporal tracking data at a high spatial and temporal granularity and at affordable costs. Coupled with powerful information and communication technologies, we now have much better data and computing platforms to pursue computational modeling of spatiotemporal dynamics. Researchers have attempted to better understand various kinds of spatiotemporal dynamics in order to predict, or even control, future changes of certain phenomena. A simple approach to representing spatiotemporal dynamics is by adding time (t) to the spatial dimensions (x,y,z) of each feature. However, spatiotemporal dynamics in the real world are more complex than a simple representation of (x,y,z,t) that describes the location of a feature at a given time. This article presents selected concepts, computational modeling approaches, and sample applications that provide a foundation to computational modeling of spatiotemporal dynamics. We also indicate why the research of spatiotemporal dynamics is important to geographic information systems (GIS) and geographic information science (GIScience), especially from a temporal GIS perspective.

AM-80 - Capturing Spatiotemporal Dynamics in Computational Modeling

We live in a dynamic world that includes various types of changes at different locations over time in natural environments as well as in human societies. Modern sensing technology, location-aware technology and mobile technology have made it feasible to collect spatiotemporal tracking data at a high spatial and temporal granularity and at affordable costs. Coupled with powerful information and communication technologies, we now have much better data and computing platforms to pursue computational modeling of spatiotemporal dynamics. Researchers have attempted to better understand various kinds of spatiotemporal dynamics in order to predict, or even control, future changes of certain phenomena. A simple approach to representing spatiotemporal dynamics is by adding time (t) to the spatial dimensions (x,y,z) of each feature. However, spatiotemporal dynamics in the real world are more complex than a simple representation of (x,y,z,t) that describes the location of a feature at a given time. This article presents selected concepts, computational modeling approaches, and sample applications that provide a foundation to computational modeling of spatiotemporal dynamics. We also indicate why the research of spatiotemporal dynamics is important to geographic information systems (GIS) and geographic information science (GIScience), especially from a temporal GIS perspective.

AM-80 - Capturing Spatiotemporal Dynamics in Computational Modeling

We live in a dynamic world that includes various types of changes at different locations over time in natural environments as well as in human societies. Modern sensing technology, location-aware technology and mobile technology have made it feasible to collect spatiotemporal tracking data at a high spatial and temporal granularity and at affordable costs. Coupled with powerful information and communication technologies, we now have much better data and computing platforms to pursue computational modeling of spatiotemporal dynamics. Researchers have attempted to better understand various kinds of spatiotemporal dynamics in order to predict, or even control, future changes of certain phenomena. A simple approach to representing spatiotemporal dynamics is by adding time (t) to the spatial dimensions (x,y,z) of each feature. However, spatiotemporal dynamics in the real world are more complex than a simple representation of (x,y,z,t) that describes the location of a feature at a given time. This article presents selected concepts, computational modeling approaches, and sample applications that provide a foundation to computational modeling of spatiotemporal dynamics. We also indicate why the research of spatiotemporal dynamics is important to geographic information systems (GIS) and geographic information science (GIScience), especially from a temporal GIS perspective.

AM-80 - Capturing Spatiotemporal Dynamics in Computational Modeling

We live in a dynamic world that includes various types of changes at different locations over time in natural environments as well as in human societies. Modern sensing technology, location-aware technology and mobile technology have made it feasible to collect spatiotemporal tracking data at a high spatial and temporal granularity and at affordable costs. Coupled with powerful information and communication technologies, we now have much better data and computing platforms to pursue computational modeling of spatiotemporal dynamics. Researchers have attempted to better understand various kinds of spatiotemporal dynamics in order to predict, or even control, future changes of certain phenomena. A simple approach to representing spatiotemporal dynamics is by adding time (t) to the spatial dimensions (x,y,z) of each feature. However, spatiotemporal dynamics in the real world are more complex than a simple representation of (x,y,z,t) that describes the location of a feature at a given time. This article presents selected concepts, computational modeling approaches, and sample applications that provide a foundation to computational modeling of spatiotemporal dynamics. We also indicate why the research of spatiotemporal dynamics is important to geographic information systems (GIS) and geographic information science (GIScience), especially from a temporal GIS perspective.

AM-80 - Capturing Spatiotemporal Dynamics in Computational Modeling

We live in a dynamic world that includes various types of changes at different locations over time in natural environments as well as in human societies. Modern sensing technology, location-aware technology and mobile technology have made it feasible to collect spatiotemporal tracking data at a high spatial and temporal granularity and at affordable costs. Coupled with powerful information and communication technologies, we now have much better data and computing platforms to pursue computational modeling of spatiotemporal dynamics. Researchers have attempted to better understand various kinds of spatiotemporal dynamics in order to predict, or even control, future changes of certain phenomena. A simple approach to representing spatiotemporal dynamics is by adding time (t) to the spatial dimensions (x,y,z) of each feature. However, spatiotemporal dynamics in the real world are more complex than a simple representation of (x,y,z,t) that describes the location of a feature at a given time. This article presents selected concepts, computational modeling approaches, and sample applications that provide a foundation to computational modeling of spatiotemporal dynamics. We also indicate why the research of spatiotemporal dynamics is important to geographic information systems (GIS) and geographic information science (GIScience), especially from a temporal GIS perspective.