CV-31 - Flow Maps

Flow mapping is a cartographic method of representing movement of phenomena. Maps of this type often depict the vector movement of entities (imports and exports, people, information) between geographic areas, but the general method also encompasses a range of graphics illustrating networks (e.g., transit and communications grids) and dynamic systems (e.g., wind and water currents). Most flow maps typically use line symbols of varying widths, lengths, shapes, colors, or speeds (in the case of animated flow maps) to show the quality, direction, and magnitude of movements. Aesthetic considerations for flow maps are numerous and their production is often done manually without significant automation. Flow maps frequently use distorted underlying geography to accommodate the placement of flow paths, which are often dramatically smoothed/abstracted into visually pleasing curves or simply straight lines. In the extreme, such maps lack a geographic coordinate space and are more diagrammatic, as in Sankey diagrams, alluvial diagrams, slope graphs, and circle migration plots. Whatever their form, good flow maps should effectively visualize the relative magnitude and direction of movement or potential movement between a one or more origins and destinations.
FC-09 - Relationships Between Space and Time
Relationships between space and time evoke fundamental questions in the sciences and humanities. Many disciplines, including GIScience, consider that space and time extend in separate dimensions, are interchangeable, and form co-equal parts of a larger thing called space-time. Our perception of how time operates in relation to space or vice verso influences how we represent space, time, and their relationships in GIS. The chosen representation, furthermore, predisposes what questions we can ask and what approaches we can take for analysis and modeling. There are many ways to think about space, time, and their relationships in GIScience. This article synthesizes five broad categories: (1) Time is independent of space but relates to space by movement and change; (2) Time collaborates with space to probe relationships, explanations, and predictions; (3) Time is spatially constructed and contained; (4) Time and space are mutually inferable; and (5) Time and space are integrated and co-equal in the formation of flows, events, and processes. Concepts, constructs, or law-like statements arise in each of the categories as examples of how space, time, and their relationships help frame scientific inquiries in GIScience and beyond.