2016 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
OI1-4 - Learning from experience
  • Explain how knowledge of the history of the development of enterprise GIS can aid in an implementation process
  • Evaluate case studies of past GISs to identify factors leading to success and failure
  • Discuss the evolution of isolated GIS projects to enterprise GIS
AM11-3 - Least-cost (shortest) path
  • Describe some variants of Dijkstra’s algorithm that are even more efficient
  • Discuss the difference of implementing Dijkstra’s algorithm in raster and vector modes
  • Demonstrate how K-shortest path algorithms can be implemented to find many efficient alternate paths across the network
  • Compute the optimum path between two points through a network with Dijkstra’s algorithm
  • Explain how a leading World Wide Web-based routing system works (e.g., MapQuest, Yahoo Maps, Google)
GS5-3 - Legal mechanisms for sharing geospatial information
  • Describe contracts, licenses, and other mechanisms for sharing geospatial data
  • Outline the terms of a licensing agreement with a local engineering consulting firm that a manager of a county government GIS office would employ if charged to recoup revenue through sale and licensure of county data
GS1-3 - Liability
  • Describe the nature of tort law generally and nuisance law specifically
  • Describe strategies for managing liability risk, including disclaimers and data quality standards
  • Describe cases of liability claims associated with misuse of geospatial information, erroneous information, and loss of proprietary interests
  • Differentiate among contract liability, tort liability, and statutory liability
AM12-2 - Linear programming
  • Explain the role of constraint functions using the simplex method
  • Explain the role of objective functions in linear programming
  • Describe the structure of linear programs
  • Explain the role of constraint functions using the graphical method
  • Implement linear programs for spatial allocation problems
DM4-6 - Linear referencing
  • Discuss dynamic segmentation as a process for transforming between linear and planar coordinate systems
  • Construct a data structure to contain point or linear geometry for database record events that are referenced by their position along a linear feature
  • Explain how linear referencing allows attributes to be displayed and analyzed that do not correspond precisely with the underlying segmentation of the network features
  • Describe how linear referencing can eliminate unnecessary segmentation of the underlying network features due to attribute value changes over time
  • Demonstrate how linear referenced locations are often much more intuitive and easy to find in the real world than geographic coordinates
GD3-4 - Linear referencing systems
  • Describe an application in which a linear referencing system is particularly useful
  • Explain how the datum associated with a linear referencing system differs from a horizontal or vertical datum
  • Identify several different linear referencing methods (e.g., mileposts, reference posts, link and node) and compare them to planar grid systems
  • Identify the characteristics that all linear referencing systems have in common Unit GD4 Datums (core unit) “Horizontal” datums define the geometric relationship between a coordinate system grid and the Earth’s surface, where the Earth’s surface is approximated by an ellipsoid or other figure. “Vertical” datums are elevation reference surfaces, such as mean sea level.
  • Explain how a network can be used as the basis for reference as opposed to the more common rectangular coordinate systems
  • Discuss the magnitude and cause of error generated in the transformation from linear to planar coordinate systems
AM7-5 - Local measures of spatial association
  • Describe the effect of non-stationarity on local indices of spatial association
  • Decompose Moran’s I and Geary’s c into local measures of spatial association
  • Compute the Gi and Gi* statistics
  • Explain how geographically weighted regression provides a local measure of spatial association
  • Explain how a weights matrix can be used to convert any classical statistic into a local measure of spatial association
  • Compare and contrast global and local statistics and their uses
AM12-4 - Location-allocation modeling and p-median problems
  • Describe the structure of origin-destination matrices
  • Explain Weber’s locational triangle
  • Assess the outcome of location-allocation models using other spatial analysis techniques
  • Compare and contrast covering, dispersion, and p-median models
  • Locate, using location-allocation software, service facilities that meet given sets of constraints
  • Explain the concepts of demand and service
DA4-3 - Logical models
  • Determine which relationships need to be stored explicitly in the database
  • Create logical models based on conceptual models and general data models using UML or other tools
  • Differentiate between conceptual and logical models, in terms of the level of detail, constraints, and range of information included
  • Evaluate the various general data models common in GIS&T for a given project, and select the most appropriate solutions
  • Distinguish between the incidental and structural relationships found in a conceptual model
  • Explain the various types of cardinality found in databases
  • Define the cardinality of relationships

Pages