2016 QUARTER 03

A B C D E F G H I K L M N O P R S T U V W
KE-01 - The process of GIS&T design
  • Describe the major approaches to the design of geospatial systems
  • Analyze past cases to identify best practices of design and implementation
  • Compare and contrast the relative merits of the use-case driven and architecture-centric design processes
DM-07 - The raster model
  • Define basic terms used in the raster data model (e.g., cell, row, column, value)
  • Write a program to read and write a raster data file
  • Compare and contrast the raster with other types of regular tessellations for geographic data analysis
  • Compare and contrast the raster with other types of regular tessellations for geographic data storage
  • Interpret the header of a standard raster data file
  • Explain how the raster data model instantiates a grid representation
AM-51 - The scope of GIS&T design
  • Differentiate between general data models and application-specific data models
  • Differentiate among application design, database design, and analytic model design
DM-12 - The spaghetti model
  • Identify a widely-used example of the spaghetti model (e.g., AutoCAD DWF, ESRI shapefile)
  • Write a program to read and write a vector data file using a common published format
  • Explain the conditions under which the spaghetti model is useful
  • Explain how the spaghetti data model embodies an object-based view of the world
  • Describe how geometric primitives are implemented in the spaghetti model as independent objects without topology
DM-13 - The topological model
  • Define terms related to topology (e.g., adjacency, connectivity, overlap, intersect, logical consistency)
  • Describe the integrity constraints of integrated topological models (e.g., POLYVRT)
  • Discuss the historical roots of the Census Bureau’s creation of GBF/DIME as the foundation for the development of topological data structures
  • Explain why integrated topological models have lost favor in commercial GIS software
  • Evaluate the positive and negative impacts of the shift from integrated topological models
  • Discuss the role of graph theory in topological structures
  • Exemplify the concept of planar enforcement (e.g., TIN triangles)
  • Demonstrate how a topological structure can be represented in a relational database structure
  • Explain the advantages and disadvantages of topological data models
  • Illustrate a topological relation
DM-10 - The Triangulated Irregular Network (TIN) model
  • Describe how to generate a unique TIN solution using Delaunay triangulation
  • Describe the architecture of the TIN model
  • Construct a TIN manually from a set of spot elevations
  • Delineate a set of break lines that improve the accuracy of a TIN
  • Describe the conditions under which a TIN might be more practical than GRID
  • Demonstrate the use of the TIN model for different statistical surfaces (e.g., terrain elevation, population density, disease incidence) in a GIS software application
FC-27 - Thematic accuracy
  • Explain the distinction between thematic accuracy, geometric accuracy, and topological fidelity
  • Outline the SDTS and ISO TC211 standards for thematic accuracy
  • Discuss how measures of spatial autocorrelation may be used to evaluate thematic accuracy
  • Describe the component measures and the utility of a misclassification matrix
  • Describe the different measurement levels on which thematic accuracy is based
AM-86 - Theory of error propagation
  • Describe stochastic error models
  • Exemplify stochastic error models used in GIScience
FC-08 - Time
  • Differentiate between mathematical and phenomenological theories of the nature of time
  • Recognize the role that time plays in “static” GISystems
  • Compare and contrast models of a given spatial process using continuous and discrete perspectives of time
  • Select the temporal elements of geographic phenomena that need to be represented in particular GIS applications
  • Exemplify different temporal frames of reference: linear and cyclical, absolute and relative
DM-28 - Topological relationships
  • Define various terms used to describe topological relationships, such as disjoint, overlap, within, and intersect
  • List the possible topological relationships between entities in space (e.g., 9-intersection) and time
  • Use methods that analyze topological relationships
  • Recognize the contributions of topology (the branch of mathematics) to the study of geographic relationships
  • Describe geographic phenomena in terms of their topological relationships in space and time to other phenomena

Pages