2016 QUARTER 02

A B C D E F G H I K L M N O P R S T U V W
OI5-5 - Openness
  • Assess the status of openness in the GIS&T field
  • In the role of a consultant or chief information officer, respond to a client’s or colleague’s question about the future prospects of open standards and systems in GIS&T
  • Discuss the advantages and disadvantages of adopting open systems in the context of a local government
  • Differentiate “open standards,” “open source,” and “open systems”
AM12-1 - Operations research modeling and location modeling principles
  • Explain how optimization models can be used to generate models of alternate options for presentation to decision makers
  • Explain, using the concept of combinatorial complexity, why some location problems are very hard to solve
  • Compare and contrast the concepts of discrete location problems and continuous location problems
  • Explain the concept of solution space
  • Explain the principles of operations research modeling and location modeling
OI3-2 - Organizational models for coordinating GISs and/or program participants and stakeholders
  • Compare and contrast centralized, federated, and distributed models for managing information infrastructures
  • Describe the roles and relationships of GIS&T support staff
  • Exemplify how to make GIS&T relevant to top management
  • Describe different organizational models for coordinating GIS&T participants and stakeholders
  • Describe the stages of two different models of implementing a GIS within an organization
OI3-1 - Organizational models for GIS management
  • Illustrate what functions a support or service center can provide to an organization using GIS&T
  • Analyze how using GIS&T as an integrating technology affects different models of management Describe how GIS&T can be used in the decision-making process in organizations dealing with natural resource management, business management, public management, or operations management 
  • Explain how GIS&T can be an integrating technology
  • Differentiate an enterprise system from a department-centered GIS
GC1-1 - Origins
  • Discuss Openshaw’s contributions in the development of this sub-discipline
  • Summarize the role of the GeoComputation conference series in shaping this sub-discipline (http://www.geocomputation.org/)
  • Summarize the development of geocomputation techniques and algorithms and the related advances in computer technology/architecture that have aided in the ability to carry out more complex processes in GIS&T
AM11-6 - Other classic network problems
  • Describe several classic problems to which network analysis is applied (e.g., the traveling salesman problem, the Chinese postman problem)
  • Explain why heuristic solutions are generally used to address the combinatorially complex nature of these problems and the difficulty of solving them optimally
AM7-6 - Outliers
  • Explain how outliers affect the results of analyses
  • Explain how the following techniques can be used to examine outliers: tabulation, histograms, box plots, correlation analysis, scatter plots, local statistics
AM4-2 - Overlay
  • Explain why the process “dissolve and merge” often follows vector overlay operations
  • Outline the possible sources of error in overlay operations
  • Compare and contrast the concept of overlay as it is implemented in raster and vector domains
  • Demonstrate how the geometric operations of intersection and overlay can be implemented in GIS
  • Demonstrate why the georegistration of datasets is critical to the success of any map overlay operation
  • Formalize the operation called map overlay using Boolean logic
  • Explain what is meant by the term “planar enforcement”
  • Exemplify applications in which overlay is useful, such as site suitability analysis
GC2-4 - Pattern recognition
  • Describe the use of based on temporal relationships of objects and space (crime or disease analyses are examples)
AM10-4 - Pattern recognition and matching
  • Differentiate among machine learning, data mining, and pattern recognition
  • Explain the principles of pattern recognition
  • Apply a simple spatial mean filter to an image as a means of recognizing patterns
  • Construct an edge-recognition filter
  • Design a simple spatial mean filter
  • Explain the outcome of an artificial intelligence analysis (e.g., edge recognition), including a discussion of what the human did not see that the computer identified and vice versa

Pages