All Topics

DC-25 - Changes in Geospatial Data Capture Over Time: Part 1, Technological Developments

Geographic Information Systems (GIS) are fueled by geospatial data.  This comprehensive article reviews the evolution of procedures and technologies used to create the data that fostered the explosion of GIS applications. It discusses the need to geographically reference different types of information to establish an integrated computing environment that can address a wide range of questions. This includes the conversion of existing maps and aerial photos into georeferenced digital data.  It covers the advancements in manual digitizing procedures and direct digital data capture. This includes the evolution of software tools used to build accurate data bases. It also discusses the role of satellite based multispectral scanners for Earth observation and how LiDAR has changed the way that we measure and represent the terrain and structures. Other sections deal with building GIS data directly from street addresses and the construction of parcels to support land record systems. It highlights the way Global Positioning Systems (GPS) technology coupled with wireless networks and cloud-based applications have spatially empowered millions of users. This combination of technology has dramatically affected the way individuals search and navigate in their daily lives while enabling citizen scientists to be active participants in the capture of spatial data. For further information on changes to data capture, see Part 2: Implications and Case Studies. 

FC-31 - Academic Developments of GIS&T in English-speaking Countries: a Partial History

The constellation of science and technology that is now considered a unit (Geographic Information Science and Technology – GIS&T) has emerged from many source disciplines through many divergent and convergent pasts in different times and places. This narrative limits itself to the perspective of the English-speaking community, leaving other regions for a separate chapter As in the case of many technical developments in the second half of the twentieth century, academic institutions played a key (though far from exclusive) role in innovation and risk-taking. In a number of locations, academic innovators tried out new technology for handling geographic information, beginning as early as the 1960s. Three institutions (University of Washington, Laboratory for Computer Graphics – Harvard University, and Experimental Cartography Unit – Royal College of Art (UK)) deserve particular treatment as examples of the early innovation process. Their innovations may look crude by current standards, but they laid some groundwork for later developments. Academic institutions played a key role in innovation over the past decades, but the positioning of that role has shifted as first government, then commercial sectors have taken the lead in certain aspects of GIS&T. Current pressures on the academic sector may act to reduce this role.

FC-18 - Adjacency and connectivity
  • List different ways connectivity can be determined in a raster and in a polygon dataset
  • Explain the nine-intersection model for spatial relationships
  • Demonstrate how adjacency and connectivity can be recorded in matrices
  • Calculate various measures of adjacency in a polygon dataset
  • Create a matrix describing the pattern of adjacency in a set of planar enforced polygons
  • Describe real world applications where adjacency and connectivity are a critical component of analysis
DC-12 - Aerial photography image interpretation
  • Use photo interpretation keys to interpret features on aerial photographs
  • Calculate the nominal scale of a vertical aerial image
  • Calculate heights and areas of objects and distances between objects shown in a vertical aerial image
  • Produce a map of land use/land cover classes using a vertical aerial image
  • Describe the elements of image interpretation
DC-10 - Aerial Photography: History and Georeferencing

In 1903, Julius Neubranner, a photography enthusiast, designed and patented a breast-mounted aerial camera for carrier pigeons. Weighing only 70 grams, the camera took automatic exposures at 30-second intervals along the flight line flown by the bird. Although faster than balloons, they were not always reliable in following their flight paths. Today the pigeon corps has been replaced by unmanned aerial vehicles, but aerial photography continues to be an important source of data for use in a wide range of geospatial applications. Processing of the imagery to remove various types of distortion is a necessary step before the images can be georeferenced and used for mapping purposes. 

AM-79 - Agent-based Modeling

Agent-based models are dynamic simulation models that provide insight into complex geographic systems. Individuals are represented as agents that are encoded with goal-seeking objectives and decision-making behaviors to facilitate their movement through or changes to their surrounding environment. The collection of localized interactions amongst agents and their environment over time leads to emergent system-level spatial patterns. In this sense, agent-based models belong to a class of bottom-up simulation models that focus on how processes unfold over time in ways that produce interesting, and at times surprising, patterns that we observe in the real world.

GS-20 - Aggregation of Spatial Entities and Legislative Redistricting

The partitioning of space is an essential consideration for the efficient allocation of resources. In the United States and many other countries, this parcelization of sub-regions for political and legislative purposes results in what is referred to as districts. A district is an aggregation of smaller, spatially bound units, along with their statistical properties, into larger spatially-bound units. When a district has the primary purpose of representation, individuals who reside within that district make up a constituency. Redistricting is often required as populations of constituents shift over time or resources that service areas change. Administrative challenges with creating districts have been greatly aided by increasing utilization of GIS. However, with these advances in geospatial methods, political disputes with the way in which districts increasingly snare the process in legal battles often centered on the topic of gerrymandering. This chapter focuses on the redistricting process within the United States and how the aggregation of representative spatial entities presents a mix of political, technical and legal challenges.

DC-18 - Algorithms and processing
  • Differentiate supervised classification from unsupervised classification
  • Describe the sequence of tasks involved in the geometric correction of the Advanced Very High Resolution Radiometer (AVHRR) Global Land Dataset
  • Compare pixel-based image classification methods with segmentation techniques
  • Explain how to enhance contrast of reflectance values clustered within a narrow band of wavelengths
  • Describe an application of hyperspectral image data
  • Produce pseudocode for common unsupervised classification algorithms, including chain method, ISODATA method, and clustering
  • Calculate a set of filtered reflectance values for a given array of reflectance values and a digital image filtering algorithm
  • Describe a situation in which filtered data are more useful than the original unfiltered data
  • Perform a manual unsupervised classification given a two-dimensional array of reflectance values and ranges of reflectance values associated with a given number of land cover categories
AM-97 - An Introduction to Spatial Data Mining

The goal of spatial data mining is to discover potentially useful, interesting, and non-trivial patterns from spatial data-sets (e.g., GPS trajectory of smartphones). Spatial data mining is societally important having applications in public health, public safety, climate science, etc. For example, in epidemiology, spatial data mining helps to nd areas with a high concentration of disease incidents to manage disease outbreaks. Computational methods are needed to discover spatial patterns since the volume and velocity of spatial data exceed the ability of human experts to analyze it. Spatial data has unique characteristics like spatial autocorrelation and spatial heterogeneity which violate the i.i.d (Independent and Identically Distributed) assumption of traditional statistic and data mining methods. Therefore, using traditional methods may miss patterns or may yield spurious patterns, which are costly in societal applications. Further, there are additional challenges such as MAUP (Modiable Areal Unit Problem) as illustrated by a recent court case debating gerrymandering in elections. In this article, we discuss tools and computational methods of spatial data mining, focusing on the primary spatial pattern families: hotspot detection, collocation detection, spatial prediction, and spatial outlier detection. Hotspot detection methods use domain information to accurately model more active and high-density areas. Collocation detection methods find objects whose instances are in proximity to each other in a location. Spatial prediction approaches explicitly model the neighborhood relationship of locations to predict target variables from input features. Finally, spatial outlier detection methods find data that differ from their neighbors. Lastly, we describe future research and trends in spatial data mining.