DC-18 - Algorithms and processing

You are currently viewing an archived version of Topic Algorithms and processing. If updates or revisions have been published you can find them at Algorithms and processing.

Learning Objectives: 
  • Differentiate supervised classification from unsupervised classification
  • Describe the sequence of tasks involved in the geometric correction of the Advanced Very High Resolution Radiometer (AVHRR) Global Land Dataset
  • Compare pixel-based image classification methods with segmentation techniques
  • Explain how to enhance contrast of reflectance values clustered within a narrow band of wavelengths
  • Describe an application of hyperspectral image data
  • Produce pseudocode for common unsupervised classification algorithms, including chain method, ISODATA method, and clustering
  • Calculate a set of filtered reflectance values for a given array of reflectance values and a digital image filtering algorithm
  • Describe a situation in which filtered data are more useful than the original unfiltered data
  • Perform a manual unsupervised classification given a two-dimensional array of reflectance values and ranges of reflectance values associated with a given number of land cover categories