All Topics

A B C D E F G H I K L M N O P R S T U V W
KE-13 - Economics and the role of information
  • Discuss the general role of information in economics
  • Describe the role of economics in the use of geospatial information
  • Describe the role of economics in public and private production of geospatial information
GS-09 - Enforcing control
  • Explain the concept of “fair use” with regard to geospatial information
  • Describe defenses against various claims of copyright infringement
  • Discuss ways in which copyright infringements may be remedied
  • Identify types of copyright infringement
GS-13 - Epistemological critiques

As GIS became a firmly established presence in geography and catalysed the emergence of GIScience, it became the target of a series of critiques regarding modes of knowledge production that were perceived as problematic. The first wave of critiques charged GIS with resuscitating logical positivism and its erroneous treatment of social phenomena as indistinguishable from natural/physical phenomena. The second wave of critiques objected to GIS on the basis that it was a representational technology. In the third wave of critiques, rather than objecting to GIS simply because it represented, scholars engaged with the ways in which GIS represents natural and social phenomena, pointing to the masculinist and heteronormative modes of knowledge production that are bound up in some, but not all, uses and applications of geographic information technologies. In response to these critiques, GIScience scholars and theorists positioned GIS as a critically realist technology by virtue of its commitment to the contingency of representation and its non-universal claims to knowledge production in geography. Contemporary engagements of GIS epistemologies emphasize the epistemological flexibility of geospatial technologies.

FC-02 - Epistemology
  • Explain the notions of model and representation in science
  • Identify the epistemological assumptions underlying the work of colleagues
  • Bridge the differences in epistemological viewpoints to enable work with diverse colleagues
  • Define common theories on what constitutes knowledge, including positivism, reflectance-correspondence, pragmatism, social constructivism, and memetics
  • Justify the epistemological frameworks with which you agree
  • Recognize the influences of epistemology on GIS practices
  • Compare and contrast the ability of various theories to explain different situations
FC-25 - Error
  • Compare and contrast how systematic errors and random errors affect measurement of distance
  • Describe the causes of at least five different types of errors (e.g., positional, attribute, temporal, logical inconsistency, and incompleteness)
DM-32 - Error-based uncertainty
  • Define uncertainty-related terms, such as error, accuracy, uncertainty, precision, stochastic, probabilistic, deterministic, and random
  • Recognize expressions of uncertainty in language
  • Evaluate the causes of uncertainty in geospatial data
  • Describe a stochastic error model for a natural phenomenon
  • Explain how the familiar concepts of geographic objects and fields affect the conceptualization of uncertainty
  • Recognize the degree to which the importance of uncertainty depends on scale and application
  • Differentiate uncertainty in geospatial situations from vagueness
GS-14 - Ethical critiques
  • Defend or refute the argument that GIS&T professionals are culpable for applications that result in civilian casualties in warfare
  • Discuss the ethical implications of the use of GIS&T as a surveillance technology
  • Defend or refute the argument that the “digital divide” that characterizes access to GIS&T perpetuates inequities among developed and developing nations, among socio-economic groups, and between individuals, community organizations, and public agencies and private firms
DM-22 - Events and processes
  • Compare and contrast the concepts of continuants (entities) and occurrents (events)
  • Describe the “actor” role that entities and fields play in events and processes
  • Discuss the difficulty of integrating process models into GIS software based on the entity and field views, and methods used to do so
  • Apply or develop formal systems for describing continuous spatio-temporal processes
  • Evaluate the assertion that “events and processes are the same thing, but viewed at different temporal scales”
  • Describe particular events or processes in terms of identity, categories, attributes, and locations
  • Compare and contrast the concepts of event and process
PD-08 - Exchange specifications
  • Describe the characteristics of the Geography Markup Language (GML)
  • Explain the purpose, history, and status of the Spatial Data Transfer Standard (SDTS)
  • Identify different levels of information integration
  • Identify the level of integration at which the Geography Markup Language (GML) operates
  • Describe the geospatial elements of Earth science data exchange specifications, such as the Ecological Metadata Language (EML), Earth Science Markup Language (ESML), and Climate Science Modeling Language (CSML)
  • Import data packaged in a standard transfer format to a GIS software package
  • Export data from a GIS program to a standard exchange format
AM-19 - Exploratory data analysis (EDA)
  • Describe the statistical characteristics of a set of spatial data using a variety of graphs and plots (including scatterplots, histograms, boxplots, q–q plots)
  • Select the appropriate statistical methods for the analysis of given spatial datasets by first exploring them using graphic methods

Pages