All Topics

A B C D E F G H I J K L M N O P R S T U V W
FC-12 - Structured Query Language (SQL) and attribute queries

The structured query language (SQL) for database interrogation is presented and illustrated with a few examples using attribute tables one might find in a common GIS database.  A short background is presented on the history and goals that the creators of the SQL language hoped to achieve, followed by a review of SQL utility for data query, editing, and definition.  While the SQL language is rich in content and breadth, this article attempts to build on a simple SQL and then iteratively add additional complexity to highlight the power that SQL affords to the GIS professional who has limited programming capabilities.  The reader is asked to consider how minor modifications to SQL syntax can add complexity and even create more dynamic mathematical models with simple English-like command statements.  Finally, the reader is challenged to consider how terse SQL statements may be used to replace relatively long and laborious command sequences required by a GIS GUI approach.

CV-08 - Symbolization and the Visual Variables

Maps communicate information about the world by using symbols to represent specific ideas or concepts. The relationship between a map symbol and the information that symbol represents must be clear and easily interpreted. The symbol design process requires first an understanding of the underlying nature of the data to be mapped (e.g., its spatial dimensions and level of measurement), then the selection of symbols that suggest those data attributes. Cartographers developed the visual variable system, a graphic vocabulary, to express these relationships on maps. Map readers respond to the visual variable system in predictable ways, enabling mapmakers to design map symbols for most types of information with a high degree of reliability.

KE-21 - System Modelling for Effective GIS Management

A geographic information system in operation is highly complex, as the scope of the GIS&T Body of Knowledge demonstrates. Modern society relies on many complex systems, but most are self-contained mechanisms with limited and well defined interfaces. A GIS is a complex open system that extends across the realms of hardware, software, data, science, and human processes. A conceptual model of a GIS can be an effective tool to design, implement, operate, maintain, manage, and assessment tool.

CV-14 - Terrain Representation

Terrain representation is the manner by which elevation data are visualized. Data are typically stored as 2.5D grid representations, including digital elevation models (DEMs) in raster format and triangulated irregular networks (TINs). These models facilitate terrain representations such as contours, shaded relief, spot heights, and hypsometric tints, as well as automate calculations of surface derivatives such as slope, aspect, and curvature. 3D effects have viewing directions perpendicular (plan), parallel (profile), or panoramic (oblique view) to the elevation’s vertical datum plane. Recent research has focused on automating, stylizing, and enhancing terrain representations. From the user’s perspective, representations of elevation are measurable or provide a 3D visual effect, with much overlap between the two. The ones a user can measure or derive include contours, hypsometric tinting, slope, aspect, and curvature. Other representations focus on 3D effect and may include aesthetic considerations, such as hachures, relief shading, physiographic maps, block diagrams, rock drawings, and scree patterns. Relief shading creates the 3D effect using the surface normal and illumination vectors with the Lambertian assumption. Non-plan profile or panoramic views are often enhanced by vertical exaggeration. Cartographers combine techniques to mimic or create mapping styles, such as the Swiss-style.

DM-49 - Tessellated referencing systems
  • Explain the concept “quadtree”
  • Describe the octahedral quarternary triangulated mesh georeferencing system proposed by Dutton
  • Discuss the advantages of hierarchical coordinates relative to geographic and plane coordinate systems
AM-42 - The Classic Transportation Problem

The classic transportation problem concerns minimizing the cost of transporting a single product from sources to destinations. It is a network-flow problem that arises in industrial logistics and is considered as a special case of linear programming. The total number of units produced at each source, the total number of units required at each destination and the cost to transport one unit from each source to each destination are the basic inputs. The objective is to minimize the total cost of transporting the units produced at sources to meet the demands at destinations. The problem solution includes three basic steps: 1) finding an initial basic feasible solution, 2) checking if the current solution is optimal (with the lowest costs), and 3) improving the current solution through iteration. Modeling and solving the classic transportation problem rely strongly on network models, least-cost path algorithms, and location-allocation analysis in the field of geographic information science (GIScience). Thus, it represents a key component in the network analytics and modeling area of GIS&T.

KE-29 - The geospatial community
  • Describe possible benefits to an organization by participating in a given society that is related to GIS&T
  • Discuss the value or effect of participation in societies, conferences, and informal communities to entities managing enterprise GIS
  • Identify conferences that are related to GIS&T
KE-30 - The geospatial industry
  • Assess the involvement of non-GIS companies (e.g., Microsoft, Google) in the geospatial industry
  • Describe three applications of geospatial technology for different workforce domains (e.g., first responders, forestry, water resource management, facilities management)
  • Explain why software products sold by U.S. companies may predominate in foreign markets, including Europe and Australia
  • Describe the U.S. geospatial industry including vendors, software, hardware and data
DM-09 - The hexagonal model
  • Illustrate the hexagonal model
  • Explain the limitations of the grid model compared to the hexagonal model
  • Exemplify the uses (past and potential) of the hexagonal model
GS-01 - The legal regime
  • Discuss ways in which the geospatial profession is regulated under the U.S. legal regime
  • Compare and contrast the relationship of the geospatial profession and the U.S. legal regime with similar relationships in other countries

Pages