spatial regression and econometrics

AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering
AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering
AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering
AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering

Pages