DC-36 - Historical Maps in GIS

The use of historical maps in coordination with GIS aids scholars who are approaching a geographical study in which an historical approach is required or is interested in the geographical relationships between different historical representations of the landscape in cartographic document. Historical maps allow the comparison of spatial relationships of past phenomena and their evolution over time and permit both qualitative and quantitative diachronic analysis. In this chapter, an explanation of the use of historical maps in GIS for the study of landscape and environment is offered. After a short theoretical introduction on the meaning of the term “historical map,” the reader will find the key steps in using historic maps in a GIS, a brief overview on the challenges in interpretation of historical maps, and some example applications.
DC-30 - Georeferencing and Georectification
Georeferencing is the recording of the absolute location of a data point or data points. Georectification refers to the removal of geometric distortions between sets of data points, most often the removal of terrain, platform, and sensor induced distortions from remote sensing imagery. Georeferencing is a requisite task for all spatial data, as spatial data cannot be positioned in space or evaluated with respect to other data that are without being assigned a spatial coordinate within a defined coordinate system. Many data are implicitly georeferenced (i.e., are labeled with spatial reference information), such as points collected from a global navigation satellite system (GNSS). Data that are not labeled with spatial reference information can be georeferenced using a number of approaches, the most commonly applied of which are described in this article. The majority of approaches employ known reference locations (i.e., Ground Control Points) drawn from a reliable source (e.g., GNSS, orthophotography) to calibrate georeferencing models. Regardless of georeferencing approach, positional error is present. The accuracy of georeferencing (i.e., amount of positional error) should be quantified, typically by the root mean squared error between ground control points from a reference source and the georeferenced data product.