geostatistics

AM-27 - Principles of semi-variogram construction
  • Identify and define the parameters of a semi-variogram (range, sill, nugget)
  • Demonstrate how semi-variograms react to spatial nonstationarity
  • Construct a semi-variogram and illustrate with a semi-variogram cloud
  • Describe the relationships between semi-variograms and correlograms, and Moran’s indices of spatial association
AM-29 - Kriging methods
  • Describe the relationship between the semi-variogram and kriging
  • Explain why it is important to have a good model of the semi-variogram in kriging
  • Explain the concept of the kriging variance, and describe some of its shortcomings
  • Explain how block-kriging and its variants can be used to combine data sets with different spatial resolution (support)
  • Compare and contrast block-kriging with areal interpolation using proportional area weighting and dasymetric mapping
  • Outline the basic kriging equations in their matrix formulation
  • Conduct a spatial interpolation process using kriging from data description to final error map
  • Explain why kriging is more suitable as an interpolation method in some applications than others
AM-28 - Semi-variogram modeling
  • List the possible sources of error in a selected and fitted model of an experimental semi-variogram
  • Describe the conditions under which each of the commonly used semi-variograms models would be most appropriate
  • Explain the necessity of defining a semi-variogram model for geographic data
  • Apply the method of weighted least squares and maximum likelihood to fit semi-variogram models to datasets
  • Describe some commonly used semi-variogram models
AM-29 - Kriging methods
  • Describe the relationship between the semi-variogram and kriging
  • Explain why it is important to have a good model of the semi-variogram in kriging
  • Explain the concept of the kriging variance, and describe some of its shortcomings
  • Explain how block-kriging and its variants can be used to combine data sets with different spatial resolution (support)
  • Compare and contrast block-kriging with areal interpolation using proportional area weighting and dasymetric mapping
  • Outline the basic kriging equations in their matrix formulation
  • Conduct a spatial interpolation process using kriging from data description to final error map
  • Explain why kriging is more suitable as an interpolation method in some applications than others
AM-28 - Semi-variogram modeling
  • List the possible sources of error in a selected and fitted model of an experimental semi-variogram
  • Describe the conditions under which each of the commonly used semi-variograms models would be most appropriate
  • Explain the necessity of defining a semi-variogram model for geographic data
  • Apply the method of weighted least squares and maximum likelihood to fit semi-variogram models to datasets
  • Describe some commonly used semi-variogram models
AM-27 - Principles of semi-variogram construction
  • Identify and define the parameters of a semi-variogram (range, sill, nugget)
  • Demonstrate how semi-variograms react to spatial nonstationarity
  • Construct a semi-variogram and illustrate with a semi-variogram cloud
  • Describe the relationships between semi-variograms and correlograms, and Moran’s indices of spatial association
AM-27 - Principles of semi-variogram construction
  • Identify and define the parameters of a semi-variogram (range, sill, nugget)
  • Demonstrate how semi-variograms react to spatial nonstationarity
  • Construct a semi-variogram and illustrate with a semi-variogram cloud
  • Describe the relationships between semi-variograms and correlograms, and Moran’s indices of spatial association
AM-28 - Semi-variogram modeling
  • List the possible sources of error in a selected and fitted model of an experimental semi-variogram
  • Describe the conditions under which each of the commonly used semi-variograms models would be most appropriate
  • Explain the necessity of defining a semi-variogram model for geographic data
  • Apply the method of weighted least squares and maximum likelihood to fit semi-variogram models to datasets
  • Describe some commonly used semi-variogram models
AM-29 - Kriging methods
  • Describe the relationship between the semi-variogram and kriging
  • Explain why it is important to have a good model of the semi-variogram in kriging
  • Explain the concept of the kriging variance, and describe some of its shortcomings
  • Explain how block-kriging and its variants can be used to combine data sets with different spatial resolution (support)
  • Compare and contrast block-kriging with areal interpolation using proportional area weighting and dasymetric mapping
  • Outline the basic kriging equations in their matrix formulation
  • Conduct a spatial interpolation process using kriging from data description to final error map
  • Explain why kriging is more suitable as an interpolation method in some applications than others
AM-29 - Kriging methods
  • Describe the relationship between the semi-variogram and kriging
  • Explain why it is important to have a good model of the semi-variogram in kriging
  • Explain the concept of the kriging variance, and describe some of its shortcomings
  • Explain how block-kriging and its variants can be used to combine data sets with different spatial resolution (support)
  • Compare and contrast block-kriging with areal interpolation using proportional area weighting and dasymetric mapping
  • Outline the basic kriging equations in their matrix formulation
  • Conduct a spatial interpolation process using kriging from data description to final error map
  • Explain why kriging is more suitable as an interpolation method in some applications than others

Pages