Cartography and Visualization

The Cartography & Visualization section encapsulates competencies related to the design and use of maps and mapping technology. This section covers core topics of reference and thematic maps design, as well as the emerging topics of interaction design, web map design, and mobile map design. This section also covers historical and contemporary influences on cartography and evolving data and critical considerations for map design and use.  

Topics in this Knowledge Area are listed thematically below. Existing topics are linked directly to either their original (2006) or revised entries; forthcoming, future topics are italicized. 

History & Trends:  Map Design Techniques:  Interactive Design Techniques: 
Cartography & Science Common Thematic Maps User Interface and User Experience (UI/UX) Design
Cartography & Technology Bivariate & Multivariate Maps Web Mapping
Cartography & Power Mapping Time Virtual & Immersive Environments
Cartography & Education Mapping Uncertainty Big Data Visualization
Cartography & Art Terrain Representation Mobile Mapping & Responsive Design
Data Considerations: Cartograms Usability Engineering
Vector Formats & Sources Icon Design Basemaps
Raster Formats & Sources Narrative & Storytelling Geovisualization
Metadata, Quality, & Uncertainty Flow Maps Geocollaboration
Map Design Fundamentals:  Map Use:  Geovisual Analytics
Scale & Generalization Map Reading  
Statistical Mapping Map Interpretation  
Geodesy, Coordinate Systems, & Projections Map Analysis  
Visual Hierarchy, Layout, & Map Elements User-Centered Design & Evaluation  
Symbolization & the Visual Variables Political Economy of Mapping  
Color Theory Map Critique  
Aesthetics & Design    
Map Production and Management    


CV-19 - Big Data Visualization
  • Explain how the concept “digital cartographic models” unifies a number of principles for computer cartography
  • Identify areas in cartography and visualization that have, and those that have not, advanced because of computational approaches
  • Explain how the rise of interoperability and open standards has affected the production of cartographic representations and visualizations
  • Explain how optimization techniques are improving the automated design of maps
  • Describe the structure and function of geographic names databases (i.e., gazetteer) for use in mapping
  • Differentiate between GIS and graphics software tools for mapping and those for visualization purposes
CV-12 - Bivariate and Multivariate Maps
  • Differentiate the interpretation of a series of three maps and a single multivariate map, each representing the same three related variables
  • Design a single map symbol that can be used to symbolize a set of related variables
  • Create a map that displays related variables using different mapping methods (e.g., choropleth
  • and proportional symbol, choropleth and cartogram) Create a map that displays related variables using the same mapping method (e.g., bivariate choropleth map, bivariate dot map)
  • Design a map series to show the change in a geographic pattern over time
  • Detect a multivariate outlier using a combination of maps and graphs
  • Explain the relationship among several variables in a parallel coordinate plot
CV-01 - Cartography and Science
  • Discuss the perspectives of Brian Harley and others on the political motivation for the development of certain kinds of maps
  • Discuss the Swiss influence on map design and production, highlighting Imhof’s contributions
  • Outline the development of some of the major map projections (e.g., Mercator, Gnomonic, Robinson)
  • Explain how Bertin has influenced trends in cartographic symbolization
  • Explain how technological changes have affected cartographic design and production
  • Explain the impact of advances in visualization methods on the evolution of cartography
  • Compare and contrast cartographic developments in various countries and world regions such as Switzerland, France, China, the Middle East, and Greece
  • Discuss the influence of some cartographers of the 16th and 17th centuries (Mercator, Ortelius, Jansson, Homann and others)
  • Describe how compilation, production, and distribution methods used in map-making have evolved
  • Describe how symbolization methods used in map-making have evolved
  • Describe the contributions by Robinson, Jenks, Raisz, and others to U.S. academic cartography
  • Discuss the relationship between the history of exploration and the development of a more accurate map of the world
CV-02 - Cartography and Technology
  • Discuss the impact that mapping on the Web via applications such as Google Earth have had on the practice of cartography
  • Explain how emerging technologies in related fields (e.g., the stereoplotter, aerial and satellite imagery, GPS and LiDAR, the World Wide Web, immersive and virtual environments) have advanced cartography and visualization methods
  • Explain how MacEachren’s Cartography-cubed (C3) concept can be used to understand the evolving role of cartography and visualization
  • Explain how software innovations such as Synagraphic Mapping System (SYMAP), Surfer, and automated contouring methods have affected the design of maps
  • Evaluate the advantages and limitations of various technological approaches to mapping
  • Select new technologies in related fields that have the most potential for use in cartography and visualization
CV-09 - Color Theory
  • List the range of factors that should be considered in selecting colors
  • Discuss the role of “gamut” in choosing colors that can be reproduced on various devices and media
  • Explain how real-world connotations (e.g., blue=water, white=snow) can be used to determine color selections on maps
  • Exemplify colors for different forms of harmony, concordance, and balance
  • Estimate RGB (red, green, blue) primary amounts in a selection of colors
  • Plan color proofing suited for checking a map publication job
  • Select colors appropriate for map readers with color limitations
  • Specify a set of colors in device-independent Commision Internationale de L’Eclairage (CIE) specifications
  • Determine the CMYK (cyan, magenta, yellow, and black) primary amounts in a selection of colors
  • Select a color scheme (e.g., qualitative, sequential, diverging, spectral) that is appropriate for a given map purpose and variable
  • Describe how cultural differences with respect to color associations impact map design
  • Describe the common color models used in mapping
  • Describe color decisions made for various production workflows
CV-11 - Common Thematic Map Types
  • Describe the design considerations for each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow map
  • Evaluate the strengths and limitations of each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow map
  • Explain why choropleth maps should (almost) never be used for mapping count data and suggest alternative methods for mapping count data
  • Choose suitable mapping methods for each attribute of a given type of feature in a GIS (e.g., roads with various attributes such as surface type, traffic flow, number of lanes, direction such as one-way)
  • Select base information suited to providing a frame of reference for thematic map symbols (e.g., network of major roads and state boundaries underlying national population map)
  • Create maps using each of the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow
  • Create well-designed legends using the appropriate conventions for the following methods: choropleth, dasymetric, proportioned symbol, graduated symbol, isoline, dot, cartogram, and flow
CV-23 - Map analysis
  • Create a profile of a cross section through a terrain using a topographic map and a digital elevation model (DEM)
  • Measure point-feature movement and point-feature diffusion on maps
  • Describe maps that can be used to find direction, distance, or position, plan routes, calculate area or volume, or describe shape
  • Explain how maps can be used in determining an optimal route or facility selection
  • Explain how maps can be used in terrain analysis (e.g., elevation determination, surface profiles, slope, viewsheds, and gradient)
  • Explain how the types of distortion indicated by projection metadata on a map will affect map measurements
  • Explain the differences between true north, magnetic north, and grid north directional references
  • Compare and contrast the manual measurement of the areas of polygons on a map printed from a GIS with those calculated by the computer and discuss the implications these variations in measurement might have on map use
  • Determine feature counts of point, line, and area features on maps
  • Analyze spatial patterns of selected point, line, and area feature arrangements on maps
  • Calculate slope using a topographic map and a DEM
  • Calculate the planimetric and actual road distances between two locations on a topographic map
  • Plan an orienteering tour of a specific length that traverses slopes of an appropriate steepness and crosses streams in places that can be forded based on a topographic map
  • Describe the differences between azimuths, bearings, and other systems for indicating directions
CV-22 - Map interpretation
  • Identify the landforms represented by specific patterns in contours on a topographic map
  • Hypothesize about geographic processes by synthesizing the patterns found on one or more thematic maps or data visualizations
  • Match features on a map to corresponding features in the world
  • Compare and contrast the interpretation of landscape, geomorphic features, and human settlement types shown on a series of topographic maps from several different countries
CV-06 - Map Projections

Map projection is the process of transforming angular (spherical / elliptical) coordinates into planar coordinates. All map projections introduce distortion (e.g., to areas, angles, distances) in the resulting planar coordinates. Understanding what, where, and how much distortion is introduced is an important consideration for spatial computations and visual interpretation of spatial patterns, as well as for general aesthetics of any map.  

CV-21 - Map reading
  • Discuss the advantages and disadvantages of using conventional symbols (e.g., blue=water, green=vegetation, Swiss cross=a hospital) on a map
  • Find specified features on a topographic map (e.g., gravel pit, mine entrance, well, land grant)
  • Match map labels to the corresponding features
  • Match the symbols on a map to the corresponding explanations in the legend
  • Execute a well designed legend that facilitates map reading
  • Explain how the anatomy of the eye and its visual sensor cells affect how one sees maps in terms of attention, acuity, focus, and color
  • Explain how memory limitations effect map reading tasks