Analytics and Modeling

This knowledge area embodies a variety of data driven analytics, geocomputational methods, simulation and model driven approaches designed to study complex spatial-temporal problems, develop insights into characteristics of geospatial data sets, create and test geospatial process models, and construct knowledge of the behavior of geographically-explicit and dynamic processes and their patterns.

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

 

Conceptual Frameworks for Spatial Analysis & Modeling Data Exploration & Spatial Statistics Network & Location Analysis
Basic Primitives Spatial Sampling for Spatial Analysis Intro to Network & Location Analysis
Spatial Relationships Exploratory Spatial Data Analysis (ESDA) Network Route & Tour Problems
Neighborhoods Kernels & Density Estimation Location & Service Area Problems
First & Second Laws of Geography Spatial Interation Accessibility Modeling
Spatial Statistics Cartographic Modeling Location-allocation Modeling
Methodological Context Multi-criteria Evaluation The Classic Transportation Problem
Spatial Analysis as a Process Spatial Process Models Space-Time Analysis & Modeling
Geospatial Analysis & Model Building Grid-based Statistics and Metrics Time Geography
Changing Context of GIScience Landscape Metrics Capturing Spatio-Temporal Dynamics in Computational Modeling 
Data Manipulation DEM and Terrain Metrics GIS-Based Computational Modeling
Point, Line, and Area Generalization Point Pattern Analysis Computational Movement Analysis
Coordinate transformations Hot-spot and Cluster Analysis Accounting for Errors in Space-Time Modeling
Data conversion Global Measures of Spatial Association Geocomputational Methods & Models
Impacts of transformations Local Measures of Spatial Association Cellular Automata
Raster resampling Simple Regression & Trend Surface Analysis Agent-based Modeling
Vector-to-raster and raster-to-vector conversions Geographically Weighted Regression Simulation Modeling
Generalization & Aggregation Spatial Autoregressive & Bayesian Methods Simulation & Modeling Systems for Agent-based Modeling
Transaction Management Spatial Filtering Models Artificial Neural Networks
Building Blocks   Genetic Algorithms & Evolutionary Computing 
Spatial & Spatiotemporal Data Models Surface & Field Analysis Big Data & Geospatial Analysis
Length & Area Operatoins Modeling Surfaces Problems & Issues with Large Spatial Databases
Polyline & Polygon Operations Surface Geometry Pattern Recognition & Matching
Overlay & Combination Operations Intervisibility Artificial Intelligence Approaches
Areal Interpolation Watersheds & Drainage Data Mining Approaches
Classification & Clustering Gridding, Interpolation, and Contouring Rule Learning for Spatial Data Mining
Boundaries & Zone Membership Deterministic Interpolation Models Machine Learning Approaches
Tesselations & Triangulations Inverse Distance Weighting CyberGIS
Spatial Queries Radial Basis & Spline Functions Analysis of Errors & Uncertainty
Distance Operations Triangulation Problems of Currency, Source, and Scale
Buffers Polynomial Functions Problems of Scale & Zoning
Directional Operations Core Concepts in Geostatistics Theory of Error Propagation
Grid Operations & Map Algebra Kriging Interpolation Propagation of Error in Geospatial Modeling
    Fuzzy Aggregation Operators
    Mathematical Models of Uncertainty

 

AM-79 - Agent-based Modeling

Agent-based models are dynamic simulation models that provide insight into complex geographic systems. Individuals are represented as agents that are encoded with goal-seeking objectives and decision-making behaviors to facilitate their movement through or changes to their surrounding environment. The collection of localized interactions amongst agents and their environment over time leads to emergent system-level spatial patterns. In this sense, agent-based models belong to a class of bottom-up simulation models that focus on how processes unfold over time in ways that produce interesting, and at times surprising, patterns that we observe in the real world.

AM-02 - Analytical approaches
  • Compare and contrast spatial statistical analysis, spatial data analysis, and spatial modeling
  • Compare and contrast the methods of analyzing aggregate data as opposed to methods of analyzing a set of individual observations
  • Define the terms spatial analysis, spatial modeling, geostatistics, spatial econometrics, spatial statistics, qualitative analysis, map algebra, and network analysis
  • Differentiate between geostatistics and spatial statistics
  • Discuss situations when it is desirable to adopt a spatial approach to the analysis of data
  • Explain what is added to spatial analysis to make it spatio-temporal analysis
  • Explain what is special (i.e., difficult) about geospatial data analysis and why some traditional statistical analysis techniques are not suited to geographic problems
  • Outline the sequence of tasks required to complete the analytical process for a given spatial problem
  • Compare and contrast spatial statistics and map algebra as two very different kinds of data analysis
AM-62 - Approaches to point, line, and area generalization
  • Describe the basic forms of generalization used in applications in addition to cartography (e.g., selection, simplification)
  • Explain why areal generalization is more difficult than line simplification
  • Explain the logic of the Douglas-Poiker line simplification algorithm
  • Explain the pitfalls of using data generalized for small scale display in a large scale application
  • Design an experiment that allows one to evaluate the effect of traditional approaches of cartographic generalization on the quality of digital data sets created from analog originals
  • Evaluate various line simplification algorithms by their usefulness in different applications
  • Discuss the possible effects on topological integrity of generalizing data sets
AM-25 - Bayesian methods
  • Define “prior and posterior distributions” and “Markov-Chain Monte Carlo”
  • Explain how the Bayesian perspective is a unified framework from which to view uncertainty
  • Compare and contrast Bayesian methods and classical “frequentist” statistical methods
AM-03 - Buffers

This short article introduces the definition of buffer and explains how buffers are created for single or multiple geographic features of different geometric types. It also discusses how buffers are generated differently in vector and raster data models and based on the concept of cost.

AM-15 - Calculating surface derivatives
  • List the likely sources of error in slope and aspect maps derived from digital elevation models (DEMs) and state the circumstances under which these can be very severe
  • Outline how higher order derivatives of height can be interpreted
  • Explain how slope and aspect can be represented as the vector field given by the first derivative of height
  • Explain why the properties of spatial continuity are characteristic of spatial surfaces
  • Explain why zero slopes are indicative of surface specific points such as peaks, pits, and passes, and list the conditions necessary for each
  • Design an algorithm that calculates slope and aspect from a triangulated irregular network (TIN) model
  • Outline a number of different methods for calculating slope from a DEM
AM-12 - Cartographic modeling
  • Describe the difference between prescriptive and descriptive cartographic models
  • Develop a flowchart of a cartographic model for a site suitability problem
  • Discuss the origins of cartographic modeling with reference to the work of Ian McHarg
AM-69 - Cellular Automata

Cellular automata (CA) are simple models that can simulate complex processes in both space and time. A CA consists of six defining components: a framework, cells, a neighborhood, rules, initial conditions, and an update sequence. CA models are simple, nominally deterministic yet capable of showing phase changes and emergence, map easily onto the data structures used in geographic information systems, and are easy to implement and understand. This has contributed to their popularity for applications such as measuring land use changes and monitoring disease spread, among many others.

AM-09 - Cluster analysis
  • Identify several cluster detection techniques and discuss their limitations
  • Demonstrate the extension of spatial clustering to deal with clustering in space-time using the Know and Mantel tests
  • Perform a cluster detection analysis to detect “hot spots” in a point pattern
  • Discuss the characteristics of the various cluster detection techniques
AM-90 - Computational Movement Analysis

Figure 1. Group movement patterns as illustrated in this coordinated escape behavior of a group of mountain goat (Rubicapra rubicapra) evading approaching hikers on the Fuorcla Trupchun near the Italian/Swiss border are at the core of computational movement analysis. Once the trajectories of moving objects are collected and made accessible for computational processing, CMA aims at a better understanding of the characteristics of movement processes of animals, people or things in geographic space.

 

Computational Movement Analysis (CMA) develops and applies analytical computational tools aiming at a better understanding of movement data. CMA copes with the rapidly growing data streams capturing the mobility of people, animals, and things roaming geographic spaces. CMA studies how movement can be represented, modeled, and analyzed in GIS&T. The CMA toolbox includes a wide variety of approaches, ranging from database research, over computational geometry to data mining and visual analytics.

Pages