Analytics and Modeling

This knowledge area embodies a variety of data driven analytics, geocomputational methods, simulation and model driven approaches designed to study complex spatial-temporal problems, develop insights into characteristics of geospatial data sets, create and test geospatial process models, and construct knowledge of the behavior of geographically-explicit and dynamic processes and their patterns.

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

 

Conceptual Frameworks for Spatial Analysis & Modeling Data Exploration & Spatial Statistics Network & Location Analysis
Basic Primitives Spatial Sampling for Spatial Analysis Intro to Network & Location Analysis
Spatial Relationships Exploratory Spatial Data Analysis (ESDA) Network Route & Tour Problems
Neighborhoods Kernels & Density Estimation Location & Service Area Problems
First & Second Laws of Geography Spatial Interation Accessibility Modeling
Spatial Statistics Cartographic Modeling Location-allocation Modeling
Methodological Context Multi-criteria Evaluation The Classic Transportation Problem
Spatial Analysis as a Process Spatial Process Models Space-Time Analysis & Modeling
Geospatial Analysis & Model Building Grid-based Statistics and Metrics Time Geography
Changing Context of GIScience Landscape Metrics Capturing Spatio-Temporal Dynamics in Computational Modeling 
Data Manipulation DEM and Terrain Metrics GIS-Based Computational Modeling
Point, Line, and Area Generalization Point Pattern Analysis Computational Movement Analysis
Coordinate transformations Hot-spot and Cluster Analysis Accounting for Errors in Space-Time Modeling
Data conversion Global Measures of Spatial Association Geocomputational Methods & Models
Impacts of transformations Local Measures of Spatial Association Cellular Automata
Raster resampling Simple Regression & Trend Surface Analysis Agent-based Modeling
Vector-to-raster and raster-to-vector conversions Geographically Weighted Regression Simulation Modeling
Generalization & Aggregation Spatial Autoregressive & Bayesian Methods Simulation & Modeling Systems for Agent-based Modeling
Transaction Management Spatial Filtering Models Artificial Neural Networks
Building Blocks   Genetic Algorithms & Evolutionary Computing 
Spatial & Spatiotemporal Data Models Surface & Field Analysis Big Data & Geospatial Analysis
Length & Area Operatoins Modeling Surfaces Problems & Issues with Large Spatial Databases
Polyline & Polygon Operations Surface Geometry Pattern Recognition & Matching
Overlay & Combination Operations Intervisibility Artificial Intelligence Approaches
Areal Interpolation Watersheds & Drainage Data Mining Approaches
Classification & Clustering Gridding, Interpolation, and Contouring Rule Learning for Spatial Data Mining
Boundaries & Zone Membership Deterministic Interpolation Models Machine Learning Approaches
Tesselations & Triangulations Inverse Distance Weighting CyberGIS
Spatial Queries Radial Basis & Spline Functions Analysis of Errors & Uncertainty
Distance Operations Triangulation Problems of Currency, Source, and Scale
Buffers Polynomial Functions Problems of Scale & Zoning
Directional Operations Core Concepts in Geostatistics Theory of Error Propagation
Grid Operations & Map Algebra Kriging Interpolation Propagation of Error in Geospatial Modeling
    Fuzzy Aggregation Operators
    Mathematical Models of Uncertainty

 

AM-87 - Problems of currency, source, and scale
  • Describe the problem of conflation associated with aggregation of data collected at different times, from different sources, and to different scales and accuracy requirements
  • Explain how geostatistical techniques might be used to address such problems
AM-85 - Propagation of error in geospatial modeling
  • Compare and contrast error propagation techniques (e.g., Taylor, Monte Carlo)
  • Explain how some operations can exacerbate error while others dampen it (e.g., mean filter)
AM-60 - Raster resampling
  • Evaluate methods used by contemporary GIS software to resample raster data on-the-fly during display
  • Select appropriate interpolation techniques to resample particular types of values in raster data (e.g., nominal using nearest neighbor)
  • Resample multiple raster data sets to a single resolution to enable overlay
  • Resample raster data sets (e.g., terrain, satellite imagery) to a resolution appropriate for a map of a particular scale
  • Discuss the consequences of increasing and decreasing resolution
AM-68 - Rule Learning for Spatial Data Mining

Recent research has identified rule learning as a promising technique for geographic pattern mining and knowledge discovery to make sense of the big spatial data avalanche (Koperski & Han, 1995; Shekhar et al., 2003). Rules conveying associative implications regarding locations, as well as semantic and spatial characteristics of analyzed spatial features, are especially of interest. This overview considers fundamentals and recent advancements in two approaches applied on spatial data: spatial association rule learning and co-location rule learning.

AM-28 - Semi-variogram modeling
  • List the possible sources of error in a selected and fitted model of an experimental semi-variogram
  • Describe the conditions under which each of the commonly used semi-variograms models would be most appropriate
  • Explain the necessity of defining a semi-variogram model for geographic data
  • Apply the method of weighted least squares and maximum likelihood to fit semi-variogram models to datasets
  • Describe some commonly used semi-variogram models
AM-84 - Simulation Modeling

Advances in computational capacity have enabled dynamic simulation modeling to become increasingly widespread in scientific research. As opposed to conceptual or physical models, simulation models enable numerical experimentation with alternative parametric assumptions for a given model design. Numerous design choices are made in model development that involve continuous or discrete representations of time and space. Simulation modeling approaches include system dynamics, discrete event simulation, agent-based modeling, and multi-method modeling. The model development process involves a shift from qualitative design to quantitative analysis upon implementation of a model in a computer program or software platform. Upon implementation, model analysis is performed through rigorous experimentation to test how model structure produces simulated patterns of behavior over time and space. Validation of a model through correspondence of simulated results with observed behavior facilitates its use as an analytical tool for evaluating strategies and policies that would alter system behavior.

AM-32 - Spatial autoregressive models
  • Explain Anselin’s typology of spatial autoregressive models
  • Demonstrate how the parameters of spatial auto-regressive models can be estimated using univariate and bivariate optimization algorithms for maximizing the likelihood function
  • Justify the choice of a particular spatial autoregressive model for a given application
  • Implement a maximum likelihood estimation procedure for determining key spatial econometric parameters
  • Apply spatial statistic software (e.g., GEODA) to create and estimate an autoregressive model
  • Conduct a spatial econometric analysis to test for spatial dependence in the residuals from least-squares models and spatial autoregressive models
AM-34 - Spatial expansion and geographically weighted regression
  • Perform an analysis using the geographically weighted regression technique
  • Discuss the appropriateness of GWR under various conditions
  • Describe the characteristics of the spatial expansion method
  • Explain the principles of geographically weighted regression
  • Compare and contrast GWR with universal kriging using moving neighborhoods
  • Explain how allowing the parameters of the model to vary with the spatial location of the sample data can be used to accommodate spatial heterogeneity
  • Analyze the number of degrees of freedom in GWR analyses and discuss any possible difficulties with the method based on your results
AM-33 - Spatial filtering
  • Identify modeling situations where spatial filtering might not be appropriate
  • Demonstrate how spatial autocorrelation can be “removed” by resampling
  • Explain how dissolving clusters of blocks with similar values may resolve the spatial correlation problem
  • Explain how the Getis and Tiefelsdorf-Griffith spatial filtering techniques incorporate spatial component variables into OLS regression analysis in order to remedy misspecification and the problem of spatially auto-correlated residuals
  • Explain how spatial correlation can result as a side effect of the spatial aggregation in a given dataset
  • Describe the relationship between factorial kriging and spatial filtering
AM-10 - Spatial Interaction

Spatial interaction (SI) is a fundamental concept in the GIScience literature, and may be defined in numerous ways. SI often describes the "flow" of individuals, commodities, capital, and information over (geographic) space resulting from a decision process. Alternatively, SI is sometimes used to refer to the influence of spatial proximity of places on the intensity of relations between those places. SI modeling as a separate research endeavor developed out of a need to mathematically model and understand the underlying determinants of these flows/influences. Proponents of SI modeling include economic geographers, regional scientists, and regional planners, as well as climate scientists, physicists, animal ecologists, and even some biophysical/environmental researchers. Originally developed from theories of interacting particles and gravitational forces in physics, SI modeling has developed through a series of refinements in terms of functional form, conceptual representations of distances, as well as a range of analytically rigorous technical improvements.
 

Pages