Cartography and Visualization

The Cartography & Visualization section encapsulates competencies related to the design and use of maps and mapping technology. This section covers core topics of reference and thematic maps design, as well as the emerging topics of interaction design, web map design, and mobile map design. This section also covers historical and contemporary influences on cartography and evolving data and critical considerations for map design and use.  

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

History & Trends:  Map Design Techniques:  Interactive Design Techniques: 
Cartography & Science Common Thematic Maps User Interface and User Experience (UI/UX) Design
Cartography & Technology Multivariate Mapping Web Mapping
Cartography & Power Spatio-Temporal Representation Virtual & Immersive Environments
Cartography & Education Representing Uncertainty Big Data Visualization
Cartography & Art Terrain Representation Mobile Maps & Responsive Design
Data Considerations: Cartograms Usability Engineering & Evaluation
Vector Formats & Sources Map Icon Design Basemaps
Raster Formats & Sources Narrative & Storytelling Geovisualization
Metadata, Quality, & Uncertainty Flow Maps Geovisual Analytics
Map Design Fundamentals:  Participatory Cartography  
Scale & Generalization Map Use  
Statistical Mapping (Enumeration, Normalization, Classification) Map Reading  
Map Projections Map Interpretation  
Visual Hierarchy & Layout Map Analysis  
Symbolization & the Visual Variables Map Critique  
Color Theory    
Typography    
Design and Aesthetics    
Map Production and Management    

 

CV-13 - User Interface and User Experience (UI/UX) Design

Advances in personal computing and information technologies have fundamentally transformed how maps are produced and consumed, as many maps today are highly interactive and delivered online or through mobile devices. Accordingly, we need to consider interaction as a fundamental complement to representation in cartography and visualization. UI (user interface) / UX (user experience) describes a set of concepts, guidelines, and workflows for critically thinking about the design and use of an interactive product, map or otherwise. This entry introduces core concepts from UI/UX design important to cartography and visualization, focusing on issues related to visual design. First, a fundamental distinction is made between the use of an interface as a tool and the broader experience of an interaction, a distinction that separates UI design and UX design. Norman’s stages of interaction framework then is summarized as a guiding model for understanding the user experience with interactive maps, noting how different UX design solutions can be applied to breakdowns at different stages of the interaction. Finally, three dimensions of UI design are described: the fundamental interaction operators that form the basic building blocks of an interface, interface styles that implement these operator primitives, and recommendations for visual design of an interface.

CV-24 - User-Centered Design and Evaluation
  • Describe the baseline expectations that a particular map makes of its audience
  • Compare and contrast the interpretive dangers (e.g., ecological fallacy, Modifiable Areal Unit Problem) that are inherent to different types of maps or visualizations and their underlying geographic data
  • Identify several uses for which a particular map is or is not effective
  • Identify the particular design choices that make a map more or less effective
  • Evaluate the effectiveness of a map for its audience and purpose
  • Design a testing protocol to evaluate the usability of a simple graphical user interface
  • Perform a rigorous sampled field check of the accuracy of a map
  • Discuss the use limitations of the USGS map accuracy standards for a range of projects demanding different levels of precision (e.g., driving directions vs. excavation planning)
CV-03 - Vector Formats and Sources

In the last ten years, the rise of efficient computing devices with significant processing power and storage has caused a surge in digital data collection and publication. As more software programs and hardware devices are released, we are not only seeing an increase in available data, but also an increase in available data formats. Cartographers today have access to a wide range of interesting datasets, and online portals for downloading geospatial data now frequently offer that data in several different formats. This chapter provides information useful to modern cartographers working with vector data, including an overview of common vector data formats (e.g. shapefile, GeoJSON, file geodatabase); their relative benefits, idiosyncrasies, and limitations; and a list of popular sources for geospatial vector data (e.g. United States Census Bureau, university data warehouses).

CV-16 - Virtual and immersive environments
  • Discuss the nature and use of virtual environments, such as Google Earth
  • Explain how various data formats and software and hardware environments support immersive visualization
  • Compare and contrast the relative advantages of different immersive display systems used for cartographic visualization (e.g., CAVEs, GeoWalls)
  • Evaluate the extent to which a GeoWall or CAVE does or does not enhance understanding of spatial data
  • Explain how the virtual and immersive environments become increasingly more complex as we move from the relatively non-immersive VRML desktop environment to a stereoscopic display (e.g., a GeoWall) to a more fully immersive CAVE
CV-07 - Visual Hierarchy and Layout

Mapmaking, by digital or manual methods, involves taking complex geographic information and building a visual image with many components. Creating effective maps requires an understanding of how to construct the elements of the map into a coherent whole that executes the communicative purpose of the map. Visual hierarchy and layout are the cartographer’s tools for organizing the map and completing the map construction. The cartographer layers the mapped geography in an image into a visual hierarchy emphasizing some features and de-emphasizing others in vertical ordering of information. Likewise, the cartographer arranges the components of a map image—title, main map, inset map, north arrow, scale, legend, toolbar, etc.—into a layout that guides the reader’s eye around the horizontal plane of the map. The visual hierarchy and layout processes work together to create the structure of the map image.

CV-15 - Web Mapping

As internet use has grown, many paper maps have been scanned and published online, and new maps have increasingly been designed for viewing in a web browser or mobile app. Web maps may be static or dynamic, and dynamic maps may either be animated or interactive. Tiled web maps are interactive maps that use tiled images to allow for fast data loading and smooth interaction, while vector web maps support rendering a wide variety of map designs on the client. Web maps follow a client-server architecture, with specialized map servers sometimes used to publish data and maps as geospatial web services. Web maps are composed of data from a database or file on the server, style information rendered on either server or client, and optionally animation or interaction instructions executed on the client. Several graphic web platforms provide user-friendly web mapping solutions, while greater customization is possible through the user of commercial or open source web mapping APIs. When designing web maps, cartographers should consider the map’s purpose on a continuum from exploratory and highly interactive to thematic and less interactive or static, the constraints of desktop and/or mobile web contexts, and accessibility for disabled, elderly, and poorly connected users.

Pages