Analytics and Modeling

This knowledge area embodies a variety of data driven analytics, geocomputational methods, simulation and model driven approaches designed to study complex spatial-temporal problems, develop insights into characteristics of geospatial data sets, create and test geospatial process models, and construct knowledge of the behavior of geographically-explicit and dynamic processes and their patterns.

Topics in this Knowledge Area are listed thematically below. Existing topics are in regular font and linked directly to their original entries (published in 2006; these contain only Learning Objectives). Entries that have been updated and expanded are in bold. Forthcoming, future topics are italicized

 

Conceptual Frameworks for Spatial Analysis & Modeling Data Exploration & Spatial Statistics Network & Location Analysis
Basic Primitives Spatial Sampling for Spatial Analysis Intro to Network & Location Analysis
Spatial Relationships Exploratory Spatial Data Analysis (ESDA) Network Route & Tour Problems
Neighborhoods Kernels & Density Estimation Location & Service Area Problems
First & Second Laws of Geography Spatial Interaction Modelling Accessibility
Spatial Statistics Cartographic Modeling Location-allocation Modeling
Methodological Context Multi-criteria Evaluation The Classic Transportation Problem
Spatial Analysis as a Process Spatial Process Models Space-Time Analysis & Modeling
Geospatial Analysis & Model Building Grid-based Statistics and Metrics Time Geography
Changing Context of GIScience Landscape Metrics Capturing Spatio-Temporal Dynamics in Computational Modeling 
Data Manipulation DEM and Terrain Metrics GIS-Based Computational Modeling
Point, Line, and Area Generalization Point Pattern Analysis Computational Movement Analysis
Coordinate transformations Hot-spot and Cluster Analysis Accounting for Errors in Space-Time Modeling
Data conversion Global Measures of Spatial Association Geocomputational Methods & Models
Impacts of transformations Local Measures of Spatial Association Cellular Automata
Raster resampling Simple Regression & Trend Surface Analysis Agent-based Modeling
Vector-to-raster and raster-to-vector conversions Geographically Weighted Regression Simulation Modeling
Generalization & Aggregation Spatial Autoregressive & Bayesian Methods Simulation & Modeling Systems for Agent-based Modeling
Transaction Management Spatial Filtering Models Artificial Neural Networks
Building Blocks   Genetic Algorithms & Evolutionary Computing 
Spatial & Spatiotemporal Data Models Surface & Field Analysis Big Data & Geospatial Analysis
Length & Area Operations Modeling Surfaces Problems & with Large Spatial Databases
Polyline & Polygon Operations Surface Geometry Pattern Recognition & Matching
Overlay & Combination Operations Intervisibility Artificial Intelligence Approaches
Areal Interpolation Watersheds & Drainage Data Mining Approaches
Classification & Clustering Gridding, Interpolation, and Contouring Rule Learning for Spatial Data Mining
Boundaries & Zone Membership Deterministic Interpolation Models Machine Learning Approaches
Tesselations & Triangulations Inverse Distance Weighting CyberGIS
Spatial Queries Radial Basis & Spline Functions Analysis of Errors & Uncertainty
Distance Operations Triangulation Problems of Currency, Source, and Scale
Buffers Polynomial Functions Problems of Scale & Zoning
Directional Operations Core Concepts in Geostatistics Theory of Error Propagation
Grid Operations & Map Algebra Kriging Interpolation Propagation of Error in Geospatial Modeling
    Fuzzy Aggregation Operators
    Mathematical Models of Uncertainty

 

AM-23 - Local measures of spatial association
  • Describe the effect of non-stationarity on local indices of spatial association
  • Decompose Moran’s I and Geary’s c into local measures of spatial association
  • Compute the Gi and Gi* statistics
  • Explain how geographically weighted regression provides a local measure of spatial association
  • Explain how a weights matrix can be used to convert any classical statistic into a local measure of spatial association
  • Compare and contrast global and local statistics and their uses
AM-46 - Location-allocation modeling

Location-allocation models involve two principal elements: 1) multiple facility location; and 2) the allocation of the services or products provided by those facilities to places of demand. Such models are used in the design of logistic systems like supply chains, especially warehouse and factory location, as well as in the location of public services. Public service location models involve objectives that often maximize access and levels of service, while private sector applications usually attempt to minimize cost. Such models are often hard to solve and involve the use of integer-linear programming software or sophisticated heuristics. Some models can be solved with functionality provided in GIS packages and other models are applied, loosely coupled, with GIS. We provide a short description of formulating two different models as well as discuss how they are solved.

AM-06 - Map algebra
  • Explain the categories of map algebra operations (i.e., local, focal, zonal, and global functions)
  • Explain why georegistration is a precondition to map algebra
  • Differentiate between map algebra and matrix algebra using real examples
  • Perform a map algebra calculation using command line, form-based, and flow charting user interfaces
  • Describe a real modeling situation in which map algebra would be used (e.g., site selection, climate classification, least-cost path)
  • Describe how map algebra performs mathematical functions on raster grids
AM-48 - Mathematical models of uncertainty: probability and statistics
  • Devise simple ways to represent probability information in GIS
  • Describe the basic principles of randomness and probability
  • Compute descriptive statistics and geostatistics of geographic data
  • Interpret descriptive statistics and geostatistics of geographic data
  • Recognize the assumptions underlying probability and geostatistics and the situations in which they are useful analytical tools
AM-82 - Microsimulation and calibration of agent activities
  • Describe a “bottom-up” simulation from an activity-perspective with changes in the locations and/or activities the individual person (and/or vehicle) in space and time, in the activity patterns and space-time trajectories created by these activity patterns, and in the consequent emergent phenomena, such as traffic jams and land-use patterns
  • Describe how various parameters in an agent-based model can be modified to evaluate the range of behaviors possible with a model specification
  • Describe how measurements on the output of a model can be used to describe model behavior
AM-44 - Modelling Accessibility

Modelling accessibility involves combining ideas about destinations, distance, time, and impedances to measure the relative difficulty an individual or aggregate region faces when attempting to reach a facility, service, or resource. In its simplest form, modelling accessibility is about quantifying movement opportunity. Crucial to modelling accessibility is the calculation of the distance, time, or cost distance between two (or more) locations, which is an operation that geographic information systems (GIS) have been designed to accomplish. Measures and models of accessibility thus draw heavily on the algorithms embedded in a GIS and represent one of the key applied areas of GIS&T.

AM-13 - Multi-criteria evaluation
  • Describe the implementation of an ordered weighting scheme in a multiple-criteria aggregation
  • Compare and contrast the terms multi-criteria evaluation, weighted linear combination, and site suitability analysis
  • Differentiate between contributing factors and constraints in a multi-criteria application
  • Explain the legacy of multi-criteria evaluation in relation to cartographic modeling
  • Determine which method to use to combine criteria (e.g., linear, multiplication)
  • Create initial weights using the analytical hierarchy process (AHP)
  • Calibrate a linear combination model by adjusting weights using a test data set
AM-66 - Multi-layer feed-forward neural networks
  • Analyze the stability of the network using multiple runs with the same training data and architecture
  • Compare and contrast classification results when the architecture of the network and initial parameters are changed
  • Differentiate between feed-forward and recurrent architectures
  • Describe the architecture and components of a feed-forward neural network
AM-05 - Neighborhoods

Neighborhoods mean different things in varied contexts like computational geometry, administration and planning, as well as urban geography and other fields. Among the multiple contexts, computational geometry takes the most abstract and data-oriented approach: polygon neighborhoods refer to polygons sharing a boundary or a point, and point neighborhoods are defined by connected Thiessen polygons or other more complicated algorithms. Neighborhoods in some regions can be a practical and clearly delineated administration or planning units. In urban geography and some related social sciences, the terms neighborhood and community have been used interchangeably on many occasions, and neighborhoods can be a fuzzy and general concept with no clear boundaries such that they cannot be easily or consensually defined. Neighborhood effects have a series of unique meanings and several delineation methods are commonly used to define social and environmental effects in health applications.

AM-43 - Other classic network problems
  • Describe several classic problems to which network analysis is applied (e.g., the traveling salesman problem, the Chinese postman problem)
  • Explain why heuristic solutions are generally used to address the combinatorially complex nature of these problems and the difficulty of solving them optimally

Pages