All Topics

A B C D E F G H I K L M N O P R S T U V W
CP-16 - On the Origins of Computing and GIS&T: Part I, A Computer Systems Perspective

This paper describes the evolutionary path of hardware systems and the hardware-software interfaces that were used for GIS&T development during its “childhood”, the era from approximately the late 1960s to the mid-1980s.  The article is structured using a conceptualization that developments occurred during this period in three overlapping epochs that have distinctive modes of interactivity and user control: mainframes, minicomputers and workstations.  The earliest GIS&T applications were developed using expensive mainframe computer systems, usually manufactured by IBM. These mainframes typically had memory measured in kilobytes and operated in batch mode with jobs submitted using punched cards as input.  Many such systems used an obscure job control language with a rigid syntax. FORTRAN was the predominant language used for GIS&T software development. Technological developments, and associated cost reductions, led to the diffusion of minicomputers and a shift away from IBM. Further developments led to the widespread adoption of single user workstations that initially used commodity processors and later switched to reduced instruction set chips. Many minicomputers and workstations ran some variant of the UNIX operating system, which substantially improved user interactivity.

CP-32 - On the Origins of Computing and GIST: Part 2, A Perspective on the Role of Peripheral Devices

GIS implementations in the late-1960s to mid-1980s required the use of exotic peripheral devices to encode and display geospatial information. Data encoding was normally performed in one of two modes: automated raster scanning and manual (vector) coordinate recording. Raster scanning systems in this era were extremely expensive, operated in batch mode, and were located at a limited number of centralized facilities, such as federal mapping agencies. Coordinate digitizers were more widely distributed and were often configured with dedicated minicomputers to handle editing and formatting tasks. Data display devices produced hardcopy and softcopy output. Two commonly encountered hardcopy devices were line printers and pen plotters. Softcopy display consisted of cathode ray tube devices that operated using frame buffer and storage tube technologies. Each device was driven by specialized software provided by device manufacturers, leading to widespread hardware-software incompatibly. This problem led to the emergence of device independence to promote increased levels of interoperability among disparate input and output devices.

DM-80 - Ontology for Geospatial Semantic Interoperability

It is difficult to share and reuse geospatial data and retrieve geospatial information because of geospatial data heterogeneity problems. Lack of semantic interoperability is one of the major problems facing GIS (Geographic Information Science/System) systems and applications today. To solve geospatial data heterogeneity problems and support geospatial information retrieval and semantic interoperability over the Web, the use of an ontology is proposed because it is a formal explicit description of concepts or meanings of words in a well-defined and unambiguous manner. Geospatial ontologies represent geospatial concepts and properties for use over the Web. OWL (Ontology Web Language) is an emerging language for defining and instantiating ontologies. OWL builds on RDF (Resource Description Framework) but adds more vocabulary for describing properties and classes. The downside of representing structured geospatial data in OWL and RDF languages is that it can result in inefficient data access. SPARQL (Simple Protocol and RDF Query Language) is recommended for general RDF query while the GeoSPARQL (Geographic Simple Protocol and RDF Query Language) protocol is proposed as an extension of SPARQL for querying geospatial data. However, the runtime cost of GeoSPARQL queries can be high due to the fine-grained nature of RDF data models. There are several challenges to using ontologies for geospatial semantic interoperability but these can be overcome through collaboration.

FC-35 - Openness

The philosophy of Openness and its use in diverse areas is attracting increasing attention from users, developers, businesses, governments, educators, and researchers around the world. The technological, socio-cultural, economic, legal, institutional, and philosophical issues related to its principles, applications, benefits, and barriers for its use are growing areas of research. The word “Open” is commonly used to denote adherence to the principles of Openness. Several fields are incorporating the use of Openness in their activities, some of them are of particular relevance to GIS&T (Geographic Information Science and Technology) such as: Open Data, Free and Open Source Software; and Open Standards for geospatial data, information, and technologies. This entry presents a definition of Openness, its importance in the area of GISc&T is introduced through a list of its benefits in the fields of Open Data, Open Source Software, and Open Standards. Then some of the barriers, myths, or inhibitors to Openness are presented using the case of Free and Open Source Software (FOSS) and FOSS for Geospatial Applications (FOSS4G).

KE-33 - Organizational Models for GIS Management

Organizational structures and management practices for GIS programs are numerous and complex. This topic begins with an explanation of organizational and management concepts and context that are particularly relevant to GIS program and project management, including strategic planning and stakeholders. Specific types of organizations that typically use GIS technology are described and organizational structure types are explained. For GIS Program management, organizational placement, organizational components, and management control and policies are covered in depth. Multi-organizational GIS Programs are also discussed. Additional topics include management roles and technology trends that affect organizational structure. It concludes with a general description of GIS Project management.