All Topics

GS-29 - GIS Participatory Modeling

Participatory research is increasingly used to better understand complex social-environmental problems and design solutions through diverse and inclusive stakeholder engagement. A growing number of approaches are helping to foster co-production of knowledge among diverse stakeholders. However, most methods don’t allow stakeholders to directly interact with the models that often drive environmental decision-making. Geospatial participatory modeling (GPM) is an approach that engages stakeholders in co-development and interpretation of models through dynamic geovisualization and simulations. GPM can be used to represent dynamic landscape processes and spatially explicit management scenarios, such as land use change or climate adaptation, enhancing opportunities for co-learning. GPM can provide multiple benefits over non-spatial approaches for participatory research processes, by (a) personalizing connections to problems and their solutions, (b) resolving abstract notions of connectivity, and (c) clarifying the scales of drivers, data, and decision-making authority. An adaptive, iterative process of model development, sharing, and revision can drive innovation of methods, improve model realism or applicability, and build capacity for stakeholders to leverage new knowledge gained from the process. This co-production of knowledge enables participants to more fully understand problems, evaluate the acceptability of trade-offs, and build buy-in for management actions in the places where they live and work.

DA-01 - GIS&T and Agriculture

Agriculture, whether in the Corn Belt of the United States, the massive rice producing areas of Southeast Asia, or the bean harvest of a smallholder producer in Central America, is the basis for feeding the world. Agriculture systems are highly complex and heterogeneous in both space and time. The need to contextualize this complexity and to make more informed decisions regarding agriculture has led to GIS&T approaches supporting the agricultural sciences in many different areas. Agriculture represents a rich resource of spatiotemporal data and different problem contexts; current and future GIScientists should look toward agricultural as a potentially rewarding area of investigation and, likewise, one where new approaches have the potential to help improve the food, environmental, and economic security of people around the world.

DA-08 - GIS&T and Archaeology

topo map and LiDAR image

Figure 1.  USGS topo map and bare earth (LiDAR) image of Tennessee’s Mound Bottom State Archaeological Area. Bare Earth DEM processed by Zada Law.

Archaeology provides a glimpse into the lives of past peoples and histories that may have otherwise been forgotten. Geographic Information Systems and Technology (GIS&T) has become an invaluable tool in this endeavor by advancing the identification, documentation, and study of archaeological resources. Large scale mapping techniques have increased the efficiency of site surveys even in challenging environments. GIS&T refers to such things as remote sensing, spatial analysis, and mapping tools. The use of GIS&T for archaeology is a truly interdisciplinary field as it borrows principles from geology, oceanography, botany, meteorology and more in order to further the science. This chapter discusses some of the primary GIS&T tools and techniques used in archaeology and the primary ways in which they are applied.

DA-04 - GIS&T and Civil Engineering

Civil Engineering, which includes sub-disciplines such as environmental, geotechnical, structural, and water resource engineering, is increasingly dependent on the GIS&T for the planning, design, operation and management of civil engineering infrastructure systems.  Typical tasks include the management of spatially referenced data sets, analytic modeling for making design decisions and estimating likely system behavior and impacts, and the visualization of systems for the decision-making process and garnering stakeholder support.

GS-28 - GIS&T and Community Engagement

URISA’s GISCorps is a case study in community engagement by members of the GIS&T community, whether for purposes of community service or service learning. Since 2004, GISCorps volunteers have contributed their GIS&T expertise to organizations and communities in need all over the world. In doing so, volunteers make a positive difference to the broader community while gaining experience, developing skills, and expanding professional networks.

DA-18 - GIS&T and Disaster Management

Geographic Information Science and Technology (GIS&T) has a long-running tradition of using spatially-oriented methodologies and representational techniques such as cartography and mapping to address hazards and disasters. This tradition remains important as ever as global society faces newer and more complex challenges resulting from climate change and new challenges such as the COVID-19 pandemic. GIS&T has become an invisible technology within the disaster management cycle of planning and preparedness, response, recovery, and mitigation. Spatial technologies such as geographic information systems (GIS), remote sensing techniques, spatial data science, artificial intelligence, and machine learning are now widespread and pervasive. Despite these advancements, there is more that can be done to incorporate GIS&T perspectives into disaster management. In this article, we outline important conceptual ideas to consider on the use of GIS&T for disaster management, disaster management organizations that use GIS&T, and practical information to orient newcomers to this exciting and important interdisciplinary combination.

DA-37 - GIS&T and Epidemiology

Location plays an important role in human health. Where we live, work, and spend our time is associated with different exposures, which may influence the risk of developing disease. GIS has been used to answer key research questions in epidemiology, which is the study of the distribution and determinants of disease. These research questions include describing and visualizing spatial patterns of disease and risk factors, exposure modeling of geographically varying environmental variables, and linking georeferenced information to conduct studies testing hypotheses regarding exposure-disease associations. GIS has been particularly instrumental in environmental epidemiology, which focuses on the physical, chemical, biological, social, and economic factors affecting health. Advances in personal exposure monitoring, exposome research, and artificial intelligence are revolutionizing the way GIS can be integrated with epidemiology to study how the environment may impact human health.

DA-16 - GIS&T and Forestry

GIS applications in forestry are as diverse as the subject itself. Many foresters match a common stereotype as loggers and firefighters, but many protect wildlife, manage urban forests, enhance water quality, provide for recreation, and plan for a sustainable future.  A broad range of management goals drives a broad range of spatial methods, from adjacency functions to zonal analysis, from basic field measurements to complex multi-scale modeling. As such, it is impossible to describe the breadth of GIS&T in forestry. This review will cover core ways that geospatial knowledge improves forest management and science, and will focus on supporting core competencies.  

DA-09 - GIS&T and Geodesign

Geodesign leverages GIS&T to allow collaborations that result in geographically specific, adaptive and resilient solutions to complex problems across scales of the built and natural environment. Geodesign is rooted in decades of research and practice. Building on that history, is a contemporary approach that embraces the latest in GIS&T, visualization, and social science, all of which is organized around a unique framework process involving six models. More than just technology or GIS, Geodesign is a way of thinking when faced with complicated spatial issues that need systematic, creative, and integrative solutions.  Geodesign holds great promise for addressing the complexity of interrelated issues associated with growth and landscape change. Geodesign empowers through design combined with data and analytics to shape our environments and create desired futures.

DA-30 - GIS&T and Landscape Ecology

Landscape ecology is a transdisciplinary science dedicated to the study of the interactions among landscape heterogeneity, humans, and natural system. Since its inception in the mid-20th Century, landscape ecology has been strongly intertwined with spatial technologies, from aerial photography to modern space-borne sensors. Satellite-based remote sensing is among the primary data sources for contemporary landscape ecology analysis, while geographic information systems provide tools to analyze the spatial configurations of satellite derived classifications, simulate landscapes and species distributions, quantify landscape change, and elucidate the reciprocal relationship between spatial patterns and ecological processes. Additionally, global navigation satellite systems, such as GPS, Galileo, and GLONASS, augment these datasets and may be used for data collection to aid landscape ecology research. Emerging geospatial technologies, such as unoccupied aerial systems and micro- and nanosatellites, also have a role to play in landscape ecology.